Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fluorescently labeled bacterial cells have become indispensable for many aspects of microbiological research, including studies on biofilm formation as an important virulence factor of various opportunistic bacteria of environmental origin such as Stenotrophomonas maltophilia. Using a Tn-based genomic integration system, we report the construction of improved mini-Tn delivery plasmids for labeling of S. maltophilia with sfGFP, mCherry, tdTomato and mKate2 by expressing their codon-optimized genes from a strong, constitutive promoter and an optimized ribosomal binding site. Transposition of the mini-Tn transposons into single neutral sites located on average 25 nucleotides downstream of the 3'-end of the conserved gene of different S. maltophilia wild-type strains did not have any adverse effects on the fitness of their fluorescently labeled derivatives. This was demonstrated by comparative analyses of growth, resistance profiles against 18 antibiotics of different classes, the ability to form biofilms on abiotic and biotic surfaces, also independent of the fluorescent protein expressed, and virulence in Galleria mellonella. It is also shown that the mini-Tn elements remained stably integrated in the genome of S. maltophilia over a prolonged period of time in the absence of antibiotic selection pressure. Overall, we provide evidence that the new improved mini-Tn delivery plasmids are valuable tools for generating fluorescently labeled S. maltophilia strains that are indistinguishable in their properties from their parental wild-type strains. The bacterium S. maltophilia is an important opportunistic nosocomial pathogen that can cause bacteremia and pneumonia in immunocompromised patients with a high rate of mortality. It is now considered as a clinically relevant and notorious pathogen in cystic fibrosis patients but has also been isolated from lung specimen of healthy donors. The high intrinsic resistance to a wide range of antibiotics complicates treatment and most likely contributes to the increasing incidence of S. maltophilia infections worldwide. One important virulence-related trait of S. maltophilia is the ability to form biofilms on any surface, which may result in the development of increased transient phenotypic resistance to antimicrobials. The significance of our work is to provide a mini-Tn-based labeling system for S. maltophilia to study the mechanisms of biofilm formation or host-pathogen interactions with live bacteria under non-destructive conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304964 | PMC |
http://dx.doi.org/10.1128/aem.00317-23 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!