The quantitative detection of drug-resistance mutations in Mycobacterium tuberculosis (MTB) is critical for determining the drug resistance status of a sample. We developed a drop-off droplet digital PCR (ddPCR) assay targeting all major isoniazid (INH)-resistant mutations. The ddPCR assay consisted of three reactions: reaction A detects mutations at S315; reaction B detects promoter mutations; and reaction C detects promoter mutations. All reactions could quantify 1%-50% of mutants in the presence of the wild-type, ranging from 100 to 50,000 copies/reaction. Clinical evaluation with 338 clinical isolates yielded clinical sensitivity of 94.5% (95% confidence interval [CI] = 89.1%-97.3%) and clinical specificity of 97.6% (95% CI = 94.6%-99.0%) compared with the traditional drug susceptibility testing (DST). Further clinical evaluation using 194 nucleic acid-positive MTB sputum samples revealed clinical sensitivity of 87.8% (95% CI = 75.8%-94.3%) and clinical specificity of 96.5% (95% CI = 92.2%-98.5%) in comparison with DST. All the mutant and heteroresistant samples detected by the ddPCR assay but susceptible by DST were confirmed by combined molecular assays, including Sanger sequencing, mutant-enriched Sanger sequencing and a commercial melting curve analysis-based assay. Finally, the ddPCR assay was used to monitor longitudinally the INH-resistance status and the bacterial load in nine patients undergoing treatment. Overall, the developed ddPCR assay could be an indispensable tool for quantification of INH-resistant mutations in MTB and bacterial loads in patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281145 | PMC |
http://dx.doi.org/10.1128/jcm.01884-22 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!