Since the first introduction of their concept in the 1980s and 90s, polymer brushes have been the focus of intense research efforts to identify novel physico-chemical properties and responsiveness, and optimise the properties of associated interfaces for an ever growing range of applications. To a large extent, this effort has been enabled by progress in surface initiated controlled polymerisation techniques, allowing a huge diversity of monomers and macromolecular architectures to be harnessed and achieved. However, polymer functionalisation through chemical coupling of various moieties and molecular structures has also played an important role in expanding the molecular design toolbox of the field of polymer brush science. This perspective article reviews recent progress in polymer brush functionalisation, discussing a broad range of strategies for the side chain and end chain chemical modification of these polymer coatings. The impact of the brush architecture on associated coupling is also examined. In turn, the role that such functionalisation approaches play in the patterning and structuring of brushes, as well as their conjugation with biomacromolecules for the design of biofunctional interfaces is then reviewed and discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270241 | PMC |
http://dx.doi.org/10.1039/d3cc01082a | DOI Listing |
Int J Mol Sci
December 2024
Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland.
The aim of this study was to elucidate the impact of porcine pancreatic enzymes (Creon pancrelipase) in comparison to microbial-derived alpha amylase (MD amylase) on the small intestine wall structure, mucosal glycogen accumulation, and enterocyte turnover. The impact of enzyme supplementation on the small intestine was explored in 18 pigs with surgically induced exocrine pancreatic insufficiency (EPI). Four healthy pigs served as the control group.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Dentistry, Federal University of Santa Catarina (UFSC), Av. Delsino Conti, s/n-Trindade, Florianópolis 88040-900, SC, Brazil.
This study aimed to evaluate the antimicrobial effectiveness of different disinfection protocols for dentures by combining methods, varying intervention sequences, sodium hypochlorite (NaOCl) concentrations (0.1% and 0.25%), and post-exposure to intraoral temperature.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
Synovial exudation, creeping, and lubrication failure in natural cartilage under a long-term normal loading can be counteracted by a tribo-rehydration (sliding-induced rehydration) phenomenon. Hydrogels, as porous materials, can also restore interfacial lubrication and overcome creep through this strategy. At appropriate sliding velocities, water molecules at the interface contact inlet are driven by hydrodynamic pressures into the porous network to resist creep extrusion.
View Article and Find Full Text PDFBraz Oral Res
January 2025
Universidade Estadual de Campinas - Unicamp, School of Dentistry of Piracicaba, Department of Restorative Dentistry, Piracicaba, SP, Brazil.
The aim of this study was to assess roughness profile and surface roughness after simulated toothbrushing cycles, as well as the degree of conversion (DC) of bulk-fill resin composites at different depths. Forty nine composite discs were made from three low-viscosity bulk-fill resins (Filtek Bulk-Fill Flowable/3M Oral Care - FBF, Beautifil-Bulk Flowable/Shofu Inc. - BBF and Surefill SDR Flow/Dentsply Caulk - SDR), three high-viscosity bulk-fill resin composites (Filtek Bulk-Fill Restorative/3M Oral Care - FBR, Beautifil-Bulk Restorative/Shofu Inc.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Research Laboratory "New Polymeric Materials", Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia.
Anionic thermo- and pH-responsive copolymers were synthesized by photoiniferter reversible addition-fragmentation chain transfer polymerization (PI-RAFT). The thermo-responsive properties were provided by oligo(ethylene glycol)-based macromonomer units containing hydrophilic and hydrophobic moieties. The pH-responsive properties were enabled by the addition of 5-20 mol% of strong (2-acrylamido-2-methylpropanesulfonic) and weak (methacrylic) acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!