The objective of this work was to evaluate the mechanical performance of Z350 resin composite modified with Bombyx mori cocoons silk nanoparticles for dental applications. Four experimental groups were analyzed G0% = Filtek Z350 resin composite (control); G1% = Filtek Z350 with 1% of silk nanoparticles; G3% = Filtek Z350 with 3% of silk nanoparticles; G5% = Filtek Z350 with 5% of silk nanoparticles. It was employed scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, 3-point flexural strength test, Knoop hardness test, and surface roughness. From 3-point flexural strength tests the control group presented the best results G0% = 113.33 MPa (±23.73). The higher flexural modulus was shown by groups G3% = 29.150 GPa (±5.191) and G5% = 34.101 GPa (±7.940), which are statistically similar. The Knoop microhardness test has shown statistical difference only among the G3% group between the top 80.78 (± 3.00) and bottom 68.80 (±3.62) and no difference between the groups. The roughness test presented no statistical difference between the groups. The incorporation of silk nanoparticles reduced the flexural strength of Z350 resin composite. The surface roughness and microhardness tests showed no changes in any of the groups studied.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208285PMC
http://dx.doi.org/10.1590/0103-6440202304950DOI Listing

Publication Analysis

Top Keywords

silk nanoparticles
24
filtek z350
16
z350 resin
12
resin composite
12
z350 silk
12
flexural strength
12
bombyx mori
8
dental applications
8
3-point flexural
8
surface roughness
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!