Biosynthesis, stabilization, and storage of carotenoids are vital processes in plants that collectively contribute to the vibrant colors observed in flowers and fruits. Despite its importance, the carotenoid storage pathway remains poorly understood and lacks thorough characterization. We identified two homologous genes, BjA02.PC1 and BjB04.PC2, belonging to the esterase/lipase/thioesterase (ELT) family of acyltransferases. We showed that BjPCs in association with fibrillin gene BjFBN1b control the stable storage of carotenoids in yellow flowers of Brassica juncea. Through genetic, high-resolution mass spectrometry and transmission electron microscopy analyses, we demonstrated that both BjA02.PC1 and BjB04.PC2 can promote the accumulation of esterified xanthophylls, facilitating the formation of carotenoid-enriched plastoglobules (PGs) and ultimately producing yellow pigments in flowers. The elimination of BjPCs led to the redirection of metabolic flux from xanthophyll ester biosynthesis to lipid biosynthesis, resulting in white flowers for B. juncea. Moreover, we genetically verified the function of two fibrillin genes, BjA01.FBN1b and BjB05.FBN1b, in mediating PG formation and demonstrated that xanthophyll esters must be deposited in PGs for stable storage. These findings identified a previously unknown carotenoid storage pathway that is regulated by BjPCs and BjFBN1b, while offering unique opportunities for improving the stability, deposition, and bioavailability of carotenoids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.18970 | DOI Listing |
Adv Sci (Weinh)
December 2024
Institute of Materials Science, Technische Universität Darmstadt, Peter-Grünberg-Str. 2, D-64287, Darmstadt, Germany.
The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.
View Article and Find Full Text PDFSci Rep
December 2024
Metanotitia Inc, Building C4, Science and Technology Innovation Headquarters, Shenzhen (Harbin) Industrial Park, 288 Zhigu Street, Songbei District, Harbin, 150029, China.
Dried blood spot (DBS) sampling offers significant advantages over conventional blood collection methods, such as reduced sample volume, minimal invasiveness, suitability for home-based sampling, and ease of transport. However, understanding the effects of variable storage temperatures and times on metabolite stability is crucial due to varying intervals and delivery conditions between sample collection and metabolomics analysis. To minimize biological variances, all samples were collected from the same individual simultaneously and stored at three different temperatures (4 °C, 25 °C, and 40 °C) for diverse time points (3, 7, 14, and 21 days).
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
School of Metallurgy and Environment, Central South University, Changsha 410083, China; Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, China; National Energy Metal Resources and New Materials Key Laboratory, Central South University, Changsha 410083, China. Electronic address:
The dendrite and corrosion issues still remain for zinc anodes. Interface modification of anodes has been widely used for stabilizing zinc anodes. However, it is still quite challenging for such modification to simultaneously suppress zinc dendrites and corrosion issues.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Science, Inner Mongolia University of Technology, Hohhot 010051, China.
Relaxor ferroelectric film capacitors exhibit high power density with ultra-fast charge and discharge rates, making them highly advantageous for consumer electronics and advanced pulse power supplies. The Aurivillius-phase bismuth layered ferroelectric films can effectively achieve a high breakdown electric field due to their unique insulating layer ((BiO) layer)). However, designing and fabricating Aurivillius-phase bismuth layer relaxor ferroelectric films with optimal energy storage characteristics is challenging due to their inherently stable ferroelectric properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!