Extracellular metallic debris is deposited into the well-known 'recycle bins' of the cells named lysosomes. The accumulation of unwanted metal ions can cause dysfunction of hydrolyzing enzymes and membrane rupturing. Thus, herein, we synthesized rhodamine-acetophenone/benzaldehyde derivatives for the detection of trivalent metal ions in aqueous media. In solution, the synthesized probes exhibited a 'turn-on' colorimetric and fluorometric response upon complexation with trivalent metal ions (M). Mechanistically, M chelation enables the appearance of a new emission band at approximately 550 nm, which verifies the disruption of the closed ring and the restoration of conjugation on the xanthene core in rhodamine 6G derivatives. Exclusive localization of the biocompatible probes at the lysosomal compartment favored the quantification of deposited Al. Moreover, the novelty of the work lies in the detection of Al deposited in the lysosome that originated from hepatitis B vaccines, which shows their efficiency for near future applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3an00562c | DOI Listing |
Environ Technol
January 2025
Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, São Paulo, Brazil.
End-of-life lithium-ion batteries (LIBs) present an opportunity to generate a circular economy through recycling. One of the techniques that can contribute to the purification of leached batteries is electrodialysis. In this work, we present a study of current variation in relation to monovalent (Li), divalent (Ni and Co) and trivalent (Al) cations from the synthetic solution of an NCA-type lithium-ion battery leachate, using electrodialysis membranes (HDX-100 and HDX-200) at three different current densities (12.
View Article and Find Full Text PDFCommun Chem
January 2025
Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
Photoinduced metal-to-ligand (or ligand-to-metal) charge-transfer (CT) states in metal complexes have been extensively studied toward the development of luminescent materials. However, previous studies have mainly focused on CT transitions between d- and π-orbitals. Herein, we report the demonstration of CT emission from 4f- to π-orbitals using a trivalent europium (Eu(III)) complex, supported by both experimental and theoretical analyses.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
The complex pollution and nutrient-poor characteristics of surface waters result in the limited ability of conventional reactors to remove pollutants. In this study, a novel modified ceramsite material, modified with trivalent iron (Fe(III)) and fulvic acid (FA) to form ceramsite@Fe(III)@FA (HC), was used for the first time as a biocarrier to immobilize strain Cupriavidus sp. W12, constructing a biofilter to enhance nitrate (NO-N) removal in micro-polluted water.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
Conventional methods for extracting rare earth metals (REMs) from mined mineral ores are inefficient, expensive, and environmentally damaging. Recent discovery of lanmodulin (LanM), a protein that coordinates REMs with high-affinity and selectivity over competing ions, provides inspiration for new REM refinement methods. Here, we used quantum mechanical (QM) methods to investigate trivalent lanthanide cation (Ln) interactions with coordination systems representing bulk solvent water and protein binding sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!