A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An iron(III) complex-based supramolecular organic framework (SOF) as a theranostic platform magnetic resonance imaging-guided chemotherapy. | LitMetric

An iron(III) complex-based supramolecular organic framework (SOF) as a theranostic platform magnetic resonance imaging-guided chemotherapy.

J Mater Chem B

National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

Published: May 2023

It is crucially important to explore the additional metal-endowed functions of supramolecular organic frameworks (SOFs) for expanding their applications. In this work we have reported the performance of a SOF (designated as Fe(III)-SOF) as a theranostic platform magnetic resonance imaging (MRI)-guided chemotherapy. The Fe(III)-SOF may be used as an MRI contrast agent for cancer diagnosis because the building unit (iron complex) contains high spin iron(III) ions. Additionally, the Fe(III)-SOF may also be used as a drug carrier because it possesses stable internal voids. We loaded doxorubicin (DOX) into the Fe(III)-SOF to obtain a DOX@Fe(III)-SOF. The Fe(III)-SOF showed good loading content (16.3%) and high loading efficiency (65.2%) for DOX. Additionally, the DOX@Fe(III)-SOF had a relatively modest relaxivity value ( = 19.745 mM s) and exhibited the strongest negative contrast (darkest) at 12 h of post-injection. Furthermore, the DOX@Fe(III)-SOF effectively inhibited tumor growth and showed high anticancer efficiency. In addition, the Fe(III)-SOF was biocompatible and biosafe. Therefore, the Fe(III)-SOF was an excellent theranostic platform and may have potential applications in tumor diagnosis and treatment in the future. We believe that this work will initiate extensive research endeavors not only on the development of SOFs, but also on the construction of theranostic platforms based on SOFs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2tb02551eDOI Listing

Publication Analysis

Top Keywords

theranostic platform
12
supramolecular organic
8
platform magnetic
8
magnetic resonance
8
feiii-sof
7
ironiii complex-based
4
complex-based supramolecular
4
organic framework
4
framework sof
4
theranostic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!