Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Developing novel types of high-performance electrochemiluminescence (ECL) emitters is of great significance for constructing ultrasensitive ECL sensors. Herein, a highly stable metal-covalent organic framework (MCOF), termed Ru-MCOF, has been devised and synthesized by employing a classic ECL luminophore, tris(4,4'-dicarboxylicacid-2,2'-bipyridyl)ruthenium(II) (Ru(dcbpy)), as building unit and applied as a novel ECL probe to construct an ultrasensitive ECL sensor for the first time. Impressively, the topologically ordered and porous architectures of the Ru-MCOF not only allow Ru(bpy) units to precisely locate and homogeneously distribute in the skeleton strong covalent bonds but also facilitate the transport of co-reactants and electrons/ions in channels to promote the electrochemical activation of both external and internal Ru(bpy) units. All these features endow the Ru-MCOF with excellent ECL emission, high ECL efficiency, and outstanding chemical stability. As expected, the constructed ECL biosensor based on the Ru-MCOF as a high-efficiency ECL probe accomplishes the ultrasensitive detection of microRNA-155. Overall, the synthesized Ru-MCOF not only enriches the MCOF family but also displays excellent ECL performance and thus expands the application of MCOFs in bioassays. Considering the structural diversity and tailorability of MCOFs, this work opens a new horizon to design and synthesize high-performance ECL emitters, therefore paving a new way to develop highly stable and ultrasensitive ECL sensors and motivating further research on MCOFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3mh00260h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!