Biomolecular imaging of intracellular structures of a single cell and subsequent screening of the cells are of high demand in metabolic engineering to develop strains with the desired phenotype. However, the capability of current methods is limited to population-scale identification of cell phenotyping. To address this challenge, we propose to utilize dispersive phase microscopy incorporated with a droplet-based microfluidic system that combines droplet volume-on-demand generation, biomolecular imaging, and droplet-on-demand sorting, to achieve high-throughput screening of cells with an identified phenotype. Particularly, cells are encapsulated in homogeneous environments with microfluidic droplet formation, and the biomolecule-induced dispersive phase can be investigated to indicate the biomass of a specific metabolite in a single cell. The retrieved biomass information consequently guides the on-chip droplet sorting unit to screen cells with the desired phenotype. To demonstrate the proof of concept, we showcase the method by promoting the evolution of the strain toward a high production of natural antioxidant astaxanthin. The validation of the proposed system with on-chip single-cell imaging and droplet manipulation functionalities reveals the high-throughput single-cell phenotyping and selection potential that applies to many other biofactory scenarios, such as biofuel production, critical quality attribute control in cell therapy,
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3lc00127j | DOI Listing |
Sci Rep
January 2025
Faculty of Art and Science, Department of Chemistry, Yıldız Technical University, 34220, İstanbul, Türkiye.
In the present study, dispersive solid phase extraction - hydride generation integrated with micro-sampling gas-liquid separator - flame atomic absorption spectrometry was proposed to determine lead in lake water samples taken in the Horseshoe Island, Antarctica. In scope of this study, microwave assisted NiFeO nanoparticles were synthesized, and the characterization of nanoparticles were carried out by FT-IR, XRD and SEM. All influential parameters of dispersive solid phase extraction and hydride generation were optimized to enhance signal intensity belonging to the analyte.
View Article and Find Full Text PDFMagn Reson Imaging
January 2025
Institute of Fluid Mechanics, University of Rostock, Rostock, Germany.
Purpose: To improve the current method for MRI turbulence quantification which is the intravoxel phase dispersion (IVPD) method. Turbulence is commonly characterized by the Reynolds stress tensor (RST) which describes the velocity covariance matrix. A major source for systematic errors in MRI is the sequence's sensitivity to the variance of the derivatives of velocity, such as the acceleration variance, which can lead to a substantial measurement bias.
View Article and Find Full Text PDFUltrasonics
January 2025
Federal State Budgetary Institution , Technological Institute for Superhard and Novel Carbon Materials of National Research Centre, Kurchatov Institute, 108840 Moscow, Troitsk, Russian Federation.
Microwave surface and Lamb waves in a multilayered piezoelectric "Al-IDT/(AlSc)N/(001)[110] diamond" structure designed as a SAW resonator were studied using both the experimental and modeling methods. In this structure, it is possible to generate Rayleigh, surface horizontal (SH) and Lamb waves simultaneously. The successful excitation of Lamb waves at operating frequencies up to 20 GHz has been obtained.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia.
In this work, the fracture mechanism of winding carbon-fiber-reinforced plastics (CFRPs) based on epoxy matrices reinforced by polysulfone film was investigated. Two types of polymer matrices were used: epoxy oligomer (EO) cured by iso-methyltetrahydrophthalic anhydride (iso-MTHPA), and EO-modified polysulfone (PSU) with active diluent furfuryl glycidyl ether (FGE) cured by iso-MTHPA. At the winding stage, the reinforcing film was placed in the middle layer of the CFRP.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Advanced Manufacturing Institute, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB nanoparticles are dispersed within the non-conducting epoxy to achieve a conductive CB-filled nanocomposite and its electrical conductivity is predicted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!