A main goal of evolutionary biology is to understand the genetic basis of adaptive evolution. Although the genes that underlie some adaptive phenotypes are now known, the molecular pathways and regulatory mechanisms mediating the phenotypic effects of those genes often remain a black box. Unveiling this black box is necessary to fully understand the genetic basis of adaptive phenotypes, and to understand why particular genes might be used during phenotypic evolution. Here, we investigated which genes and regulatory mechanisms are mediating the phenotypic effects of the Eda haplotype, a locus responsible for the loss of lateral plates and changes in the sensory lateral line of freshwater threespine stickleback (Gasterosteus aculeatus) populations. Using a combination of RNAseq and a cross design that isolated the Eda haplotype on a fixed genomic background, we found that the Eda haplotype affects both gene expression and alternative splicing of genes related to bone development, neuronal development and immunity. These include genes in conserved pathways, like the BMP, netrin and bradykinin signalling pathways, known to play a role in these biological processes. Furthermore, we found that differentially expressed and differentially spliced genes had different levels of connectivity and expression, suggesting that these factors might influence which regulatory mechanisms are used during phenotypic evolution. Taken together, these results provide a better understanding of the mechanisms mediating the effects of an important adaptive locus in stickleback and suggest that alternative splicing could be an important regulatory mechanism mediating adaptive phenotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.16989 | DOI Listing |
Cancer Immunol Immunother
January 2025
Department of Respiratory and Critical Medicine, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, China.
Despite identifying specific CD8 T cell subsets associated with immunotherapy resistance, the molecular pathways driving this process remain elusive. Given the potential role of CD38 in regulating CD8 T cell function, we aimed to investigate the accumulation of CD38CD8 T cells in lung cancer and explore its role in immunotherapy resistance. Phenotypic analysis of tumoral CD8 T cells from both lung cancer patients and immunotherapy-resistant preclinical models revealed that CD38-expressing CD8 T cells consist of CD38 and CD38 subsets.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
Background: We previously discovered that Aβ accumulates in the cortical/supranuclear region of the lens in people with Alzheimer's Disease (AD) (Goldstein et al., 2003) and Down Syndrome (DS; (Moncaster et al., 2010).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Background: Despite recent FDA approvement of disease-modifying treatments that reduce Aβ, the identification of novel therapeutic strategies that could delay the Alzheimer's disease (AD) development are needed. We identified and developed novel small molecule compounds that mildly inhibit mitochondrial complex I (MCI). Chronic treatment with a tool compound CP2 in 4 mouse models of familial AD was efficacious protecting against synaptic dysfunction and memory impairment, improving brain energetics and cognitive performance, reducing levels of human pTau and Ab.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Neurochemistry Laboratory, Department of Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, North Holland, Netherlands.
Background: Transcriptomic and pathological studies indicate that microglia play a key role in the progression of Alzheimer's disease (AD). Throughout the stages of the AD continuum, there may be varying microglia phenotypes, such as the disease-associated microglia (DAM). Microglia proteins have been detected in cerebrospinal-fluid (CSF), providing a quantifiable avenue for potential stage-detection.
View Article and Find Full Text PDFClin Chem
January 2025
Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States.
Background: Candida auris is an emerging multidrug-resistant pathogen. Interpretation of susceptibility testing can be difficult since minimum inhibitory concentration (MIC) breakpoints have not been fully established.
Methods: All C.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!