Land conservation and increased carbon uptake on land are fundamental to achieving the ambitious targets of the climate and biodiversity conventions. Yet, it remains largely unknown how such ambitions, along with an increasing demand for agricultural products, could drive landscape-scale changes and affect other key regulating nature's contributions to people (NCP) that sustain land productivity outside conservation priority areas. By using an integrated, globally consistent modelling approach, we show that ambitious carbon-focused land restoration action and the enlargement of protected areas alone may be insufficient to reverse negative trends in landscape heterogeneity, pollination supply, and soil loss. However, we also find that these actions could be combined with dedicated interventions that support critical NCP and biodiversity conservation outside of protected areas. In particular, our models indicate that conserving at least 20% semi-natural habitat within farmed landscapes could primarily be achieved by spatially relocating cropland outside conservation priority areas, without additional carbon losses from land-use change, primary land conversion or reductions in agricultural productivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10188494PMC
http://dx.doi.org/10.1038/s41467-023-38043-1DOI Listing

Publication Analysis

Top Keywords

climate biodiversity
8
conservation priority
8
priority areas
8
protected areas
8
land
5
projected landscape-scale
4
landscape-scale repercussions
4
repercussions global
4
global action
4
action climate
4

Similar Publications

Climate and Bedrock Collectively Influence the Diversity Pattern of Plant Communities in Qiniangshan Mountain.

Plants (Basel)

December 2024

State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.

Climate and geological diversity have been proven to make an important contribution to biodiversity. Volcanic ecosystems often have a long geological history and diverse bedrock, thus shaping a variety of habitats. Understanding the relative importance and role of the contemporary climate and geological bedrock environment in volcanic biodiversity still needs further exploration.

View Article and Find Full Text PDF

A survey of the moss flora of the southernmost part of the Russian Primorsky Territory yielded several intriguing taxa, whose identity is assessed herein based on an integrative morpho-molecular approach. was previously known in inland Asia only from the Sino-Himalayan region and the new locality is distant from the earlier known ones to ca. 3000 km.

View Article and Find Full Text PDF

Metagenomic Analysis Revealing the Impact of Water Contents on the Composition of Soil Microbial Communities and the Distribution of Major Ecological Functional Genes in Poyang Lake Wetland Soil.

Microorganisms

December 2024

Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China.

Poyang Lake is the largest freshwater lake in China, which boasts unique hydrological conditions and rich biodiversity. In this study, metagenomics technology was used to sequence the microbial genome of soil samples S1 (sedimentary), S2 (semi-submerged), and S3 (arid) with different water content from the Poyang Lake wetland; the results indicate that the three samples have different physicochemical characteristics and their microbial community structure and functional gene distribution are also different, resulting in separate ecological functions. The abundance of typical ANME archaea and the high abundance of in S1 mutually demonstrate prominent roles in the methane anaerobic oxidation pathway during the methane cycle.

View Article and Find Full Text PDF

Global climate change and invasive plants significantly impact biodiversity and ecosystem functions. This study focuses on the effects of progressive warming on microbial communities within the invasion community, simulated through six stages of invasion progression, from minimal to dominant presence alongside native , in bulk soils collected from a natural habitat and cultivated under controlled greenhouse conditions. Utilizing high-throughput sequencing and microbial community analysis on 72 samples collected from the invasion community, the shifts in soil microbiota under varying warming scenarios were investigated (+0 °C, +1.

View Article and Find Full Text PDF

Habitat Suitability of Based on the Optimized MaxEnt Model.

Insects

December 2024

Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China.

, commonly known as the tiger butterfly, is a visually appealing species in the Danaidae family. As it is not currently classified as endangered, it is excluded from key protected species lists at national and local levels, limiting focus on its population and habitat status, which may result in it being overlooked in local butterfly conservation initiatives. Yunnan, characterized by high butterfly diversity, presents an ideal region for studying habitat suitability for , which may support the conservation of regional biodiversity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!