Seizures due to cortical dysplasia are notorious for their poor prognosis even with medications and surgery, likely due to the widespread seizure network. Previous studies have primarily focused on the disruption of dysplastic lesions, rather than remote regions such as the hippocampus. Here, we first quantified the epileptogenicity of the hippocampus in patients with late-stage cortical dysplasia. We further investigated the cellular substrates leading to the epileptic hippocampus, using multiscale tools including calcium imaging, optogenetics, immunohistochemistry and electrophysiology. For the first time, we revealed the role of hippocampal somatostatin-positive interneurons in cortical dysplasia-related seizures. Somatostatin-positive were recruited during cortical dysplasia-related seizures. Interestingly, optogenetic studies suggested that somatostatin-positive interneurons paradoxically facilitated seizure generalization. By contrast, parvalbumin-positive interneurons retained an inhibitory role as in controls. Electrophysiological recordings and immunohistochemical studies revealed glutamate-mediated excitatory transmission from somatostatin-positive interneurons in the dentate gyrus. Taken together, our study reveals a novel role of excitatory somatostatin-positive neurons in the seizure network and brings new insights into the cellular basis of cortical dysplasia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10188524PMC
http://dx.doi.org/10.1038/s41392-023-01404-9DOI Listing

Publication Analysis

Top Keywords

cortical dysplasia
16
seizure network
12
somatostatin-positive interneurons
12
interneurons dentate
8
dentate gyrus
8
widespread seizure
8
cortical dysplasia-related
8
dysplasia-related seizures
8
cortical
6
interneurons
5

Similar Publications

Establishing age-group specific reference intervals of human salivary proteome and its preliminary application for epilepsy diagnosis.

Sci China Life Sci

December 2024

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.

Salivary proteins serve multifaceted roles in maintaining oral health and hold significant potential for diagnosing and monitoring diseases due to the non-invasive nature of saliva sampling. However, the clinical utility of current saliva biomarker studies is limited by the lack of reference intervals (RIs) to correctly interpret the testing result. Here, we developed a rapid and robust saliva proteome profiling workflow, obtaining coverage of >1,200 proteins from a 50-µL unstimulated salivary flow with 30 min gradients.

View Article and Find Full Text PDF

A novel ARCN1 splice-site variant in a Chinese girl with central precocious puberty, intrauterine growth restriction, microcephaly, and microretrognathia.

BMC Pediatr

December 2024

Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China.

The ARCN1 gene encodes the delta subunit of the coatomer protein complex I (COPI), which is essential for mediating protein transport from the Golgi complex to the endoplasmic reticulum. Variants in ARCN1 are associated with clinical features such as microcephaly, microretrognathia, intrauterine growth restriction, short rhizomelic stature, and developmental delays. We present a case of a patient exhibiting intrauterine growth restriction, preterm birth, microcephaly, micrognathia, and central precocious puberty.

View Article and Find Full Text PDF

Early detection of focal cortical dysplasia (FCD) using brain MRI in young children presenting with drug-resistant epilepsy may facilitate prompt surgical treatment, resulting in better control of seizures and decreased associated cognitive difficulties. Characteristics of FCD described in the literature are predominantly based on MRI findings in a fully myelinated brain; therefore, changes occurring during early brain maturation are not well known. In this case report, we describe distinct MRI features of a FCD visualized best before completion of myelination of the cortex and subcortical white matter.

View Article and Find Full Text PDF

Identifying the Pathogenicity of a Novel NPRL3 Missense Mutation Using Personalized Cortical Organoid Model of Focal Cortical Dysplasia.

J Mol Neurosci

December 2024

Department of Neurosurgery, National Children's Medical Center (Shanghai), Children's Hospital of Fudan University, No.399 Wan Yuan Avenue, Minhang District, Shanghai, 201102, China.

Focal cortical dysplasia (FCD) II is a cortical malformation characterized by cortical architectural abnormalities, dysmorphic neurons, with or without balloon cells. Here, we systematically explored the pathophysiological role of the GATOR1 subunit NPRL3 variants including a novel mutation from iPSCs derived from one FCD II patient. Three FCD II children aged 0.

View Article and Find Full Text PDF

Objective: At our institute, most pediatric patients undergo epilepsy surgery following a thorough presurgical evaluation without intracranial electroencephalography (EEG). We conducted an initial validation of our noninvasive presurgical strategy by assessing the seizure and developmental outcomes of 135 children.

Methods: All 135 pediatric patients were <15 years old, had undergone curative surgery, and were followed for at least 2 years postoperatively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!