CMGN: a conditional molecular generation net to design target-specific molecules with desired properties.

Brief Bioinform

State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Medicinal Chemistry, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.

Published: July 2023

The rational design of chemical entities with desired properties for a specific target is a long-standing challenge in drug design. Generative neural networks have emerged as a powerful approach to sample novel molecules with specific properties, termed as inverse drug design. However, generating molecules with biological activity against certain targets and predefined drug properties still remains challenging. Here, we propose a conditional molecular generation net (CMGN), the backbone of which is a bidirectional and autoregressive transformer. CMGN applies large-scale pretraining for molecular understanding and navigates the chemical space for specified targets by fine-tuning with corresponding datasets. Additionally, fragments and properties were trained to recover molecules to learn the structure-properties relationships. Our model crisscrosses the chemical space for specific targets and properties that control fragment-growth processes. Case studies demonstrated the advantages and utility of our model in fragment-to-lead processes and multi-objective lead optimization. The results presented in this paper illustrate that CMGN has the potential to accelerate the drug discovery process.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbad185DOI Listing

Publication Analysis

Top Keywords

conditional molecular
8
molecular generation
8
generation net
8
desired properties
8
drug design
8
chemical space
8
properties
6
cmgn
4
cmgn conditional
4
design
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!