Objective: To compare antibiotic resistance results at different time points in patients with urinary tract infections (UTIs), who were either treated based upon a combined multiplex polymerase chain reaction (M-PCR) and pooled antibiotic susceptibility test (P-AST) or were not treated.

Methods: The M-PCR/P-AST test utilized here detects 30 UTI pathogens or group of pathogens, 32 antibiotic resistance (ABR) genes, and phenotypic susceptibility to 19 antibiotics. We compared the presence or absence of ABR genes and the number of resistant antibiotics, at baseline (Day 0) and 5-28 days (Day 5-28) after clinical management in the antibiotic-treated (n = 52) and untreated groups (n = 12).

Results: Our results demonstrated that higher percentage of patients had a reduction in ABR gene detection in the treated compared to the untreated group (38.5% reduction vs 0%, = 0.01). Similarly, significantly more patients had reduced numbers of resistant antibiotics, as measured by the phenotypic P-AST component of the test, in the treated than in the untreated group (42.3% reduction vs 8.3%, = 0.04).

Conclusion: Our results with both resistance gene and phenotypic antibiotic susceptibility results demonstrated that treatment based upon rapid and sensitive M-PCR/P-AST resulted in reduction rather than induction of antibiotic resistance in symptomatic patients with suspected complicated UTI (cUTI) in an urology setting, indicating this type of test is valuable in the management of these types of patients. Further studies of the causes of gene reduction, including elimination of ABR gene-carrying bacteria and loss of ABR gene(s), are warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182799PMC
http://dx.doi.org/10.2147/IDR.S406745DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
16
antibiotic susceptibility
12
abr genes
12
multiplex polymerase
8
polymerase chain
8
urinary tract
8
tract infections
8
resistant antibiotics
8
day 5-28
8
untreated group
8

Similar Publications

A Conjugated Oligomer with Drug Efflux Pump Inhibition and Photodynamic Therapy for Synergistically Combating Resistant Bacteria.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China.

High expression of drug efflux pump makes antibiotics ineffective against bacteria, leading to drug-resistant strains and even the emergence of "superbugs". Herein, we design and synthesize a dual functional o-nitrobenzene (NB)-modified conjugated oligo-polyfluorene vinylene (OPFV) photosensitizer, OPFV-NB, which can depress efflux pump activity and also possesses photodynamic therapy (PDT) for synergistically overcoming drug-resistant bacteria. Upon light irradiation, the OPFV-NB can produce aldehyde active groups to covalently bind outer membrane proteins, such as tolerant colicin (TolC), blocking drug efflux of bacteria.

View Article and Find Full Text PDF

Broiler farming and antibiotic use through an agency theory lens. A case study from West Bengal, India.

PLoS One

January 2025

Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, WOAH Collaborating Centre in Risk Analysis and Modelling, Royal Veterinary College, London, United Kingdom.

Chicken meat (broiler) production is a rapidly growing livestock sector in India, and one dominated by contract farming. Studies have reported high levels of antibiotic use in Indian broiler farms which is concerning given this is one of the driving forces for the development of antibiotic resistance. This study used the economic lens of agency theory to examine strategic decisions which occur during contract broiler production and their potential impact on antibiotic use, using West Bengal as a case study.

View Article and Find Full Text PDF

Multiplicity of type 6 secretion system toxins limits the evolution of resistance.

Proc Natl Acad Sci U S A

January 2025

Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom.

The bacterial type 6 secretion system (T6SS) is a toxin-injecting nanoweapon that mediates competition in plant- and animal-associated microbial communities. Bacteria can evolve de novo resistance against T6SS attacks, but resistance is far from universal in natural communities, suggesting key features of T6SS weaponry may act to limit its evolution. Here, we combine ecoevolutionary modeling and experimental evolution to examine how toxin type and multiplicity in attackers shape resistance evolution in susceptible competitors.

View Article and Find Full Text PDF

Drought, as an abiotic stressor, globally limits cereal productivity, leading to early aging of leaves and lower yields. The expression of the isopentenyl transferase (IPT) gene, which is involved in cytokinin (CK) biosynthesis, can delay drought-induced leaf senescence. In this study, the Agrobacterium Isopentenyl transferase (IPT) gene was introduced into two local hexaploid wheat cultivars, NR-421 and FSD-2008.

View Article and Find Full Text PDF

Background: Shorter courses of antibiotic therapy are increasingly recommended to reduce antibiotic exposure. However quantifying the real-world impact of duration of therapy is hindered by bias common in observational studies. We aimed to evaluate the harms and benefits of longer versus shorter duration of therapy in older adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!