Objective: To investigate the therapeutic effect of Buyang huanwu decoction (BYHWD) on sepsis-induced myocardial injury (SIMI) and explore the mechanism by which BYHWD mitigates SIMI.

Methods: The Lipopolysaccharide (LPS)-induced SIMI mouse model was established to detect the effect of BYHWD-low (1 mg/kg), BYHWD-middle (5 mg/kg), and BYWHD-high (20 mg/kg) on SIMI. The survival of these BYHWD-treated septic mice was investigated. The histology of myocardial tissues was determined by hematoxylin and eosin (H&E) staining. The apoptotic index and inflamed microenvironment of myocardial tissues were assessed by immunofluorescent staining (IF) and flow cytometry analysis. Liquid chromatography-mass spectrometry (LC-MS/MS) was employed to determine the key chemical components in the serum of BYHWD-loaded septic mice. Immunoblotting assay was utilized to detect NF-κB and TGF-β signaling activity, and M1/M2-macrophage markers using RAW264.7 cells.

Results: The high dosage of BYHWD (BYHWD-high, 20 mg/Kg) significantly attenuated SIMI and improved the survival of septic mice. The BYHWD-high solution markedly reduced myocardial cell apoptosis and mitigated the inflamed microenvironment by suppressing CD45 immune cell infiltration. Importantly, BYHWD decreased macrophage accumulation and promoted an M2-macrophage polarization. Paeoniflorin (PF) and calycosin-7-O-β-glucoside (CBG) were identified as the key molecules in BYWHD with therapeutic effect. PF (10 μM) and CBG (1 μM) inhibited NF-κB signaling, meanwhile they upregulated the TGF-β pathway, thereby facilitating an M2-macrophage phenotypic transition in RAW264.7 cells.

Conclusions: BYHWD, with two effective components PF and CBG, can mitigate SIMI by suppressing the inflamed myocardial microenvironment and skewing an immunosuppressive M2-macrophage phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182506PMC

Publication Analysis

Top Keywords

septic mice
12
buyang huanwu
8
huanwu decoction
8
decoction byhwd
8
sepsis-induced myocardial
8
myocardial injury
8
immune cell
8
cell infiltration
8
m2-macrophage polarization
8
myocardial tissues
8

Similar Publications

Neutrophils are peripheral blood-circulating leukocytes that play a pivotal role in host defense against bacterial pathogens which upon activation, they release web-like chromatin structures called neutrophil extracellular traps (NETs). Here, we analyzed and compared the importance of myeloid differentiation factor 88 (MYD88), peptidyl arginine deiminase 4 (PAD4), and gasdermin D (GSDMD) for NET formation in vivo following sepsis and neutrophilia challenge. Injection of lipopolysaccharide (LPS)/E.

View Article and Find Full Text PDF

Suppression of Sepsis Cytokine Storm by Escherichia Coli Cell Wall-Derived Carbon Dots.

Adv Mater

January 2025

State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China.

Article Synopsis
  • Sepsis is a severe condition caused by an uncontrolled immune reaction to infections, often involving harmful bacteria like E. coli, and currently lacks effective treatments.
  • Researchers developed E. coli wall-derived carbon dots (E-CDs) that can reduce inflammation and improve survival rates in septic mice by binding to immune receptors and preventing excessive immune responses.
  • E-CDs also show promise in other models, reducing inflammation and oxidative stress, suggesting they could be a new therapeutic approach for treating sepsis by utilizing pathogen-derived materials.
View Article and Find Full Text PDF

Septic shock involves severe systemic inflammatory reaction toward various invading species, such as microorganisms and microbial toxins. Such a response is complicated and characterized as being a dynamic and time-dependent phenomenon. During this response, a significant amount of pro-inflammatory cytokines may be produced, causing a rapid death rate in septic victims and occasionally leading to apoptosis of immune cells within the first hours of septic reaction.

View Article and Find Full Text PDF

Focal Septic Arthritis Elicits Age and TLR2-Dependent Periarticular Bone Loss.

J Inflamm Res

December 2024

Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Introduction: Septic arthritis, primarily caused by (), is a severe joint infection that leads to joint and bone damage. lipoproteins (LPPs) bind to Toll-like Receptor 2 (TLR2), inducing arthritis and localized bone loss. Aging affects TLR2 immune response to pathogens.

View Article and Find Full Text PDF

Functional connectivity within sensorimotor cortical and striatal regions is regulated by sepsis in a sex-dependent manner.

Neuroimage

January 2025

Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA. Electronic address:

Article Synopsis
  • Sepsis leads to systemic immune issues and organ failure, often resulting in severe brain disability, with young females showing better recovery than males.
  • Using a mouse model, researchers found that after experiencing sepsis, both male and female mice showed weight regain and reduced gut microbiome diversity, but males displayed more significant immune changes and brain inflammation.
  • fMRI analysis highlighted that while both sexes experienced similar changes in certain brain areas, male mice had altered connectivity patterns suggesting a delayed recovery process compared to females, indicating a complex, sex-dependent response to sepsis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!