Personal physiological data is the digital representation of physical features that identify individuals in the Internet of Everything environment. Such data includes characteristics of uniqueness, identification, replicability, irreversibility of damage, and relevance of information, and this data can be collected, shared, and used in a wide range of applications. As facial recognition technology has become prevalent and smarter over time, facial data associated with critical personal information poses a potential security and privacy risk of being leaked in the Internet of Everything application platform. However, current research has not identified a systematic and effective method for identifying these risks. Thus, in this study, we adopted the fault tree analysis method to identify risks. Based on the risks identified, we then listed intermediate events and basic events according to the causal logic, and drew a complete fault tree diagram of facial data breaches. The study determined that personal factors, data management and supervision absence are the three intermediate events. Furthermore, the lack of laws and regulations and the immaturity of facial recognition technology are the two major basic events leading to facial data breaches. We anticipate that this study will explain the manageability and traceability of personal physiological data during its lifecycle. In addition, this study contributes to an understanding of what risks physiological data faces in order to inform individuals of how to manage their data carefully and to guide management parties on how to formulate robust policies and regulations that can ensure data security.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166458PMC
http://dx.doi.org/10.1057/s41599-023-01673-3DOI Listing

Publication Analysis

Top Keywords

physiological data
16
facial data
16
data
13
personal physiological
12
facial recognition
8
recognition technology
8
fault tree
8
intermediate events
8
basic events
8
data breaches
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!