The vegetation layer contributes to multiple functions of green roofs including their hydrological function as plants remove water from substrates between rainfall events through evapotranspiration, restoring the green roofs storage capacity for rainfall retention. While individual traits have been related to water use strategies of green roof plants, these traits are inconsistent, suggesting the importance of trait combinations which may be reflected in CSR (competitor, stress tolerator, ruderal) strategies. Therefore, relating plant water use to leaf traits and CSR strategies could help facilitate green roof plant selection into new geographical regions where green roof technology is developing. For example, in high latitude northern European regions with long daylight during the growing season. Growth (shoot biomass, relative growth rate and leaf area), leaf traits (leaf dry matter content, specific leaf area and succulence) and CSR strategies were determined of 10 common European green roof plants and related to their water use under well-watered (WW) and water-deficit (WD) conditions. All three succulent species included in the experiment showed mostly stress tolerant traits and their water loss was less than the bare unplanted substrate, likely due to mulching of the substrate surface. Plants with greater water use under WW conditions had more ruderal and competitive strategies, and greater leaf area and shoot biomass, than species with lower WW water use. However, the four species with the highest water use under WW conditions were able to downregulate their water use under WD, indicating that they could both retain rainfall and survive periods of water limitations. This study indicates that, for optimal stormwater retention, green roof plant selection in high latitude regions like northern Europe, should focus on selecting non-succulent plants with predominantly competitive or ruderal strategies to make the most of the long daylight during the short growing season.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.164044 | DOI Listing |
J Environ Manage
January 2025
Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844, Katowice, Poland. Electronic address:
Green roofs and walls offer many benefits, not only in terms of the ecosystem services, but also in terms of improving building performance. The growing medium is the most important component of green roofs and walls. It should ensure stable plant growth with minimal maintenance and the proper choice is crucial for the survival and performance of the vegetation.
View Article and Find Full Text PDFHeliyon
December 2024
Baoji Northwest Nonferrous Metal Erlihe Mining Co., Ltd., Baoji, 721700, China.
The restoration and treatment of underground voids have always posed significant challenges for constructing environmentally sustainable mines. To investigate the effectiveness of a combined approach involving waste rock filling and grouting roof filling as treatment methods to ensure safety and stability in mining voids, this study employed a comprehensive dynamic analysis approach. It specifically focused on an individual underground metal mine cavity by integrating numerical simulation analysis techniques with onsite displacement monitoring methods.
View Article and Find Full Text PDFR Soc Open Sci
December 2024
BiBio Research Group, Natural Sciences Museum of Granollers, Granollers 08402, Spain.
Urban green roofs offer environmental and social benefits and provide resources for urban wildlife; however, how birds use green roofs remains poorly studied in Mediterranean cities. Here, we develop a 1-year study in Madrid, Spain, recording the birds that use both an urban green roof and the adjacent conventional roofs throughout the four seasons. We recorded a total of 17 bird species in the area, of which 8 use the green roof surveyed.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department Systemic Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Saxony, Germany.
Owing to climate change, numerous regions around the world are expected to experience heightened occurrences of extreme events, including heat waves and intense precipitation. This will disproportionately impact the well-being of urban populations. The implementation of green roofs is actively considered as a viable climate adaptation strategy enhancing the resilience of cities.
View Article and Find Full Text PDFSci Rep
November 2024
School of Architecture, Nanjing Tech University, Nanjing, 211816, China.
Machinery operation is a major source of carbon emissions in building deconstruction. Early intervention through Design for Deconstruction (DfD) is crucial for emission reduction, yet the factors influencing these emissions are underexplored. This study integrates parametric BIM with multi-objective optimization (MOO) to assess mechanical carbon emissions in deconstruction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!