The importance of three synthesized metallogels of suberic acid distinctly with nickel, zinc, and cadmium acetate salts has been uncovered. For the creation of these soft materials, ,'-dimethyl formamide was utilized as a source of the trapped solvent. The synthesized metallogels display intriguing viscoelasticity, and the interpretation of experimental parameters obtained from rheological results advocates the gel behavior. Microstructural analysis combined with energy-dispersive X-ray confirms the occurrence of individual gel-developing constituents as observed in different hierarchical microstructural patterns. Significant variations in microstructural arrangements with diverse extent of supramolecular non-covalent patterns inside gel networks were perceived through field emission scanning electron microscopy, atomic force microscopy, and transmission electron microscopy analyses. Fourier transform infrared and electrospray ionization-mass spectral analyses and powder X-ray diffraction analysis of metallogel samples of different gel-establishing ingredients help to investigate the possible supramolecular interactions dictating the metallogel scaffolds. Thermogravimetric analysis of xerogel samples was collected from the synthesized metallogels to understand the thermal stability. These gel materials were characterized by their potential antibacterial efficiency. The potency of metallogels against selective Gram-positive and Gram-negative bacteria was visualized via a spectrophotometer. Human pathogens like (MTCC 109), (MTCC 733), , (MTCC 1272), (NCDO 955), and (MTCC 96) are employed in this study. Apart from the biological significance, our metallogels demonstrate as incredible diode performance of fabricated semiconducting systems, which exhibit a considerable amount of non-linearity demonstrating a non-ohmic conduction mechanism at room temperature in dark conditions. Device fabrication was achieved from these metallogels employing the sandwich model with indium tin oxide-coated glass substrates/metallogel/Al structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c00765 | DOI Listing |
Chem Asian J
December 2024
Department of chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
Metal-organic gels (MOGs) are a type of supramolecular complex that have become highly intriguing due to their synergistic combination of inorganic and organic elements. We report the synthesis and characterization of a Ni-directed supramolecular gel using chiral amino acid L-DOPA (3,4-dihydroxy phenylalanine) containing ligand, which coordinates with Ni(II) to form metal-organic gels with exceptional properties. The functional Ni(II)-gel was synthesized by heating nickel(II) acetate hexahydrate and the L-DOPA containing ligand in DMSO at 70 °C.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
Sci Rep
November 2024
Department of Physics, Indian Institute of Technology Patna, Bihar, 801106, India.
A highly efficient approach for synthesizing a supramolecular metallogel of Co(II) ions, denoted as CoA-TA, has been established under room temperature and atmospheric pressure conditions. This method employs the metal-coordinating organic ligand benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. A comprehensive analysis of the mechanical properties of the resulting supramolecular Co(II)-metallogel was conducted through rheological investigation, considering angular frequency and thixotropic study.
View Article and Find Full Text PDFLangmuir
September 2024
Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
A self-assembly-directed thixotropic metallohydrogel (i.e., Mg-Tetrakis) of Mg(II)-metal salt and ,,','-tetrakis(2-hydroxy-ethyl)ethylenediamine (i.
View Article and Find Full Text PDFRSC Adv
August 2024
Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691.
Novel metallogels were synthesized using l(+)-tartaric acid as a gelator, along with cadmium(ii)-acetate and mercury(ii)-acetate in ,-dimethyl formamide at room temperature. Rheological analyses confirmed the mechanical stability of Cd(ii)- and Hg(ii)-metallogels under varying conditions. Characterization through EDX mapping and FESEM imaging provided insights into their chemical constituents and microstructural features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!