The excited-state properties of an asymmetric triphenylamine-quinoxaline push-pull system wherein triphenylamine and quinoxaline take up the roles of an electron donor and acceptor, respectively, are initially investigated. Further, in order to improve the push-pull effect, powerful electron acceptors, viz., 1,1,4,4-tetracyanobutadiene (TCBD) and cyclohexa-2,5-diene-1,4-diylidene-expanded tetracyanobutadiene (also known as expanded-TCBD or exTCBD), have been introduced into the triphenylamine-quinoxaline molecular framework using a catalyst-free [2 + 2] cycloaddition-retroelectrocyclization reaction. The presence of these electron acceptors caused strong ground-state polarization extending the absorption well into the near-IR region accompanied by strong fluorescence quenching due to intramolecular charge transfer (CT). Systematic studies were performed using a suite of spectral, electrochemical, computational, and pump-probe spectroscopic techniques to unravel the intramolecular CT mechanism and to probe the role of TCBD and exTCBD in promoting excited-state CT and separation events. Faster CT in exTCBD-derived compared to that in TCBD-derived push-pull systems has been witnessed in polar benzonitrile.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.3c01732DOI Listing

Publication Analysis

Top Keywords

intramolecular charge
8
charge transfer
8
asymmetric triphenylamine-quinoxaline
8
triphenylamine-quinoxaline push-pull
8
electron acceptors
8
accelerated intramolecular
4
transfer tetracyanobutadiene-
4
tetracyanobutadiene- expanded
4
expanded tetracyanobutadiene-incorporated
4
tetracyanobutadiene-incorporated asymmetric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!