AI Article Synopsis

  • Influenza A virus primarily enters host cells through a process called clathrin-dependent receptor-mediated endocytosis, but the exact entry receptor has not been definitively identified.
  • Researchers used a method involving proximity ligation and mass spectrometry to identify transferrin receptor 1 (TfR1) as a potential receptor that facilitates IAV entry.
  • Experiments confirmed that TfR1's recycling is crucial for virus entry, and even modified forms of TfR1 can assist in IAV uptake, highlighting a unique mechanism by which the virus exploits the receptor.

Article Abstract

Influenza A virus (IAV) enters host cells mostly through clathrin-dependent receptor-mediated endocytosis. A single bona fide entry receptor protein supporting this entry mechanism remains elusive. Here we performed proximity ligation of biotin to host cell surface proteins in the vicinity of attached trimeric hemagglutinin-HRP and characterized biotinylated targets using mass spectrometry. This approach identified transferrin receptor 1 (TfR1) as a candidate entry protein. Genetic gain-of-function and loss-of-function experiments, as well as in vitro and in vivo chemical inhibition, confirmed the functional involvement of TfR1 in IAV entry. Recycling deficient mutants of TfR1 do not support entry, indicating that TfR1 recycling is essential for this function. The binding of virions to TfR1 via sialic acids confirmed its role as a directly acting entry factor, but unexpectedly even headless TfR1 promoted IAV particle uptake in . TIRF microscopy localized the entering virus-like particles in the vicinity of TfR1. Our data identify TfR1 recycling as a revolving door mechanism exploited by IAV to enter host cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214170PMC
http://dx.doi.org/10.1073/pnas.2214936120DOI Listing

Publication Analysis

Top Keywords

host cells
12
influenza virus
8
transferrin receptor
8
enter host
8
tfr1
8
tfr1 recycling
8
entry
6
virus exploits
4
exploits transferrin
4
recycling
4

Similar Publications

Background: Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown.

View Article and Find Full Text PDF

Artificial metalloenzyme assembly in cellular compartments for enhanced catalysis.

Nat Chem Biol

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China.

Artificial metalloenzymes (ArMs) integrated within whole cells have emerged as promising catalysts; however, their sensitivity to metal centers remains a systematic challenge, resulting in diminished activity and turnover. Here we address this issue by inducing in cellulo liquid-liquid phase separation through a self-labeling fusion protein, HaloTag-SNAPTag. This strategy creates membraneless, isolated liquid condensates within Escherichia coli as protective compartments for the assembly of ArMs using the same fusion protein.

View Article and Find Full Text PDF

Intestinal TM6SF2 protects against metabolic dysfunction-associated steatohepatitis through the gut-liver axis.

Nat Metab

January 2025

Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.

Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear.

View Article and Find Full Text PDF

β-Glucan reprograms neutrophils to promote disease tolerance against influenza A virus.

Nat Immunol

January 2025

Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada.

Disease tolerance is an evolutionarily conserved host defense strategy that preserves tissue integrity and physiology without affecting pathogen load. Unlike host resistance, the mechanisms underlying disease tolerance remain poorly understood. In the present study, we investigated whether an adjuvant (β-glucan) can reprogram innate immunity to provide protection against influenza A virus (IAV) infection.

View Article and Find Full Text PDF

Staphylococcus aureus (S. aureus) can survive inside nonprofessional phagocytes such as keratinocytes, enabling it to evade antibiotics and cause recurrent infections once treatment stops. New antibacterial strategies to eliminate intracellular, multidrug-resistant bacteria are needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!