Objective: Our study defines a novel electrode placement method called Functionally Adaptive Myosite Selection (FAMS), as a tool for rapid and effective electrode placement during prosthesis fitting. We demonstrate a method for determining electrode placement that is adaptable towards individual patient anatomy and desired functional outcomes, agnostic to the type of classification model used, and provides insight into expected classifier performance without training multiple models.

Methods: FAMS relies on a separability metric to rapidly predict classifier performance during prosthesis fitting.

Results: The results show a predictable relationship between the FAMS metric and classifier accuracy (3.45%SE), allowing estimation of control performance with any given set of electrodes. Electrode configurations selected using the FAMS metric show improved control performance ( ) for target electrode counts compared to established methods when using an ANN classifier, and equivalent performance ( R ≥ .96) to previous top-performing methods on an LDA classifier, with faster convergence ( ). We used the FAMS method to determine electrode placement for two amputee subjects by using the heuristic to search through possible sets, and checking for saturation in performance vs electrode count. The resulting configurations that averaged 95.8% of the highest possible classification performance using a mean 25 number of electrodes (19.5% of the available sites).

Significance: FAMS can be used to rapidly approximate the tradeoffs between increased electrode count and classifier performance, a useful tool during prosthesis fitting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10702234PMC
http://dx.doi.org/10.1109/TBME.2023.3274053DOI Listing

Publication Analysis

Top Keywords

electrode placement
16
classifier performance
12
functionally adaptive
8
adaptive myosite
8
myosite selection
8
electrode
8
prosthesis fitting
8
performance
8
fams metric
8
control performance
8

Similar Publications

Background: Coronary sinus (CS) lead placement in persistent left superior vena cava (PLSVC) cases is challenging because of the poor backup force of the guiding catheter within the enlarged CS. Active fixation Quadripolar leads (Attain Stability™ Quad 4798, Medtronic) can expand choice to CS branches with limited access; however, no cases of anchoring to the main body of the CS have been published to date.

Case Summary: We describe a case of cardiac resynchronization therapy pacemaker upgrade in a 79-year-old female who developed pacing-induced cardiomyopathy after pacemaker implantation via the right superior vena cava (SVC) for atrioventricular block eight years ago wherein PLSVC was revealed during the procedure.

View Article and Find Full Text PDF

Purpose: Spinal cord stimulation (SCS) is pivotal in treating chronic intractable pain. To elucidate the mechanism of action among conventional and current novel types of SCSs, a stable and reliable electrophysiology model in the consensus animals to mimic human SCS treatment is essential. We have recently developed a new in vivo implantable pulsed-ultrahigh-frequency (pUHF) SCS platform for conducting behavioral and electrophysiological studies in rats.

View Article and Find Full Text PDF

Optimal placement of high-channel visual prostheses in human retinotopic visual cortex.

J Neural Eng

January 2025

Faculty of Psychology, University of Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands, Maastricht, 6211 LK, NETHERLANDS.

Recent strides in neurotechnology show potential to restore vision in individuals afflicted with blindness due to early visual pathway damage. As neuroprostheses mature and become available to a larger population, manual placement and evaluation of electrode designs becomes costly and impractical. An automatic method to optimize the implantation process of electrode arrays at large-scale is currently lacking.

View Article and Find Full Text PDF

Protocol for recording physiological signals from the human cerebellum using electroencephalography.

STAR Protoc

January 2025

Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY 10032, USA. Electronic address:

As Purkinje cells of the cerebellum have a very fast firing rate, techniques with high temporal resolution are required to capture cerebellar physiology. Here, we present a protocol to record physiological signals in humans using cerebellar electroencephalography (cEEG). We describe steps for electrode placement and recording.

View Article and Find Full Text PDF

Purpose Of The Review: In the United States, spinal cord injuries affect approximately 18,000 individuals annually, most commonly resulting from mechanical trauma. The consequent paraplegia severely impairs motor functions, creating an urgent need for innovative therapeutic strategies that extend beyond traditional rehabilitation and pharmacotherapy. This review assesses the effectiveness of Spinal Cord Stimulation (SCS) in improving motor function in patients with spinal cord injuries, with a particular focus on paraplegia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!