Gastric endoscopic screening is an effective way to decide appropriate gastric cancer treatment at an early stage, reducing gastric cancer-associated mortality rate. Although artificial intelligence has brought a great promise to assist pathologist to screen digitalized endoscopic biopsies, existing artificial intelligence systems are limited to be utilized in planning gastric cancer treatment. We propose a practical artificial intelligence-based decision support system that enables five subclassifications of gastric cancer pathology, which can be directly matched to general gastric cancer treatment guidance. The proposed framework is designed to efficiently differentiate multi-classes of gastric cancer through multiscale self-attention mechanism using 2-stage hybrid vision transformer networks, by mimicking the way how human pathologists understand histology. The proposed system demonstrates its reliable diagnostic performance by achieving class-average sensitivity of above 0.85 for multicentric cohort tests. Moreover, the proposed system demonstrates its great generalization capability on gastrointestinal track organ cancer by achieving the best class-average sensitivity among contemporary networks. Furthermore, in the observational study, artificial intelligence-assisted pathologists show significantly improved diagnostic sensitivity within saved screening time compared to human pathologists. Our results demonstrate that the proposed artificial intelligence system has a great potential for providing presumptive pathologic opinion and supporting decision of appropriate gastric cancer treatment in practical clinical settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2023.3276778 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!