Synthesis and Application of Carbon Quantum Dots Derived from Carbon Black in Bioimaging.

J Fluoresc

Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, 3619995161, Iran.

Published: January 2024

Carbon quantum dots (CQDs) are a new type of fluorescent QDs that consists mainly of carbon atoms. In this research, CQDs were synthesized through harsh oxidizing conditions applied on carbon black and subsequent N-doping using hexamethylenetetramine (Hexamine) and polyethyleneimine (PEI). The synthesized CQDs were characterized using FTIR, AFM, UV-Visible spectroscopy, photoluminescence (PL) spectroscopy, and fluorescence imaging respectively. The AFM images showed that the dots are in the range of 2-8 nm. N-doping of the CQDs increased the PL intensity. The PL enhancement for the CQDs that were N-doped with PEI was higher compared to those N-doped with hexamine. The shift in PL by changing the excitation wavelength has been attributed to the nano-size of the CQDs, functional groups, defect traps, and quantum confinement effect. The in vitro fluorescence imaging revealed that N-doped CQDs can internalize into the cells and be used for fluorescent cell imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-023-03252-wDOI Listing

Publication Analysis

Top Keywords

carbon quantum
8
quantum dots
8
carbon black
8
fluorescence imaging
8
cqds
7
carbon
5
synthesis application
4
application carbon
4
dots derived
4
derived carbon
4

Similar Publications

We present the synthesis, structural analysis, and remarkable reactivity of the first carbon nanohoop that fully incorporates ferrocene in the macrocyclic backbone. The high strain imposed on the ferrocene by the curved nanohoop structure enables unprecedented photochemical reactivity of this otherwise photochemically inert metallocene complex. Visible light activation triggers a ring-opening of the nanohoop structure, fully dissociating the Fe-cyclopentadienyl bonds in the presence of 1,10-phenanthroline.

View Article and Find Full Text PDF

Based on nitrogen and phosphorus co-doped carbon dots (NP-CDs), a direct, quick, and selective sensing probe for fluorometric detection of rutin has been developed. Utilizing ethylene diamine tetra acetic acid (EDTA) as a carbon and nitrogen source and diammonium hydrogen phosphate (NH)HPO as a nitrogen and phosphorus source. The NP-CDs were synthesized in less than 3 min with a straightforward one-step microwave pyrolysis process with a high quantum yield (63.

View Article and Find Full Text PDF

Although electrostatic catalysis can enhance the kinetics and selectivity of reactions to produce greener synthetic processes, the highly directional nature of electrostatic interactions has limited widespread application. In this study, the influence of oriented electric fields (OEF) on radical addition and atom abstraction reactions are systematically explored with ion-trap mass spectrometry using structurally diverse distonic radical ions that maintain spatially separated charge and radical moieties. When installed on rigid molecular scaffolds, charged functional groups lock the magnitude and orientation of the internal electric field with respect to the radical site, creating an OEF which tunes the reactivity across the set of gas-phase carbon-centred radical reactions.

View Article and Find Full Text PDF

Acidic Engineering on Buried Interface toward Efficient Inorganic CsPbI Perovskite Light-Emitting Diodes.

Nano Lett

January 2025

School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.

Inorganic CsPbI perovskite has emerged as a promising emitter for deep-red light-emitting diodes (LEDs) due to its intrinsic thermal stability and suitable bandgap. However, uncontrollable CsPbI crystallization induced by an alkaline zinc oxide (ZnO) substrate in bulk film-based LEDs leads to insufficient external quantum efficiencies (EQEs) at high brightness, leaving obstacles in commercialization progress. Herein, we demonstrate an effective acidic engineering strategy with wide applicability to modify the surface property of ZnO and regulate CsPbI crystallization.

View Article and Find Full Text PDF

Currently, biopolymer-based Zn-containing nanoforms are of great interest for medical applications. However, there is lack information on optimal synthesis parameters, reagents and stabilizing agent for production of zinc carbonate nanoparticles (ZnC-NPs). In this work, synthesis of ZnC-NPs was carried out by chemical precipitation with the use of chitosan, hydroxyethyl cellulose, methyl cellulose and hyaluronic acid as stabilizing agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!