Machine learning (ML) models are being actively used in modern medicine, including neurosurgery. This study aimed to summarize the current applications of ML in the analysis and assessment of neurosurgical skills. We conducted this systematic review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched the PubMed and Google Scholar databases for eligible studies published until November 15, 2022, and used the Medical Education Research Study Quality Instrument (MERSQI) to assess the quality of the included articles. Of the 261 studies identified, we included 17 in the final analysis. Studies were most commonly related to oncological, spinal, and vascular neurosurgery using microsurgical and endoscopic techniques. Machine learning-evaluated tasks included subpial brain tumor resection, anterior cervical discectomy and fusion, hemostasis of the lacerated internal carotid artery, brain vessel dissection and suturing, glove microsuturing, lumbar hemilaminectomy, and bone drilling. The data sources included files extracted from VR simulators and microscopic and endoscopic videos. The ML application was aimed at classifying participants into several expertise levels, analysis of differences between experts and novices, surgical instrument recognition, division of operation into phases, and prediction of blood loss. In two articles, ML models were compared with those of human experts. The machines outperformed humans in all tasks. The most popular algorithms used to classify surgeons by skill level were the support vector machine and k-nearest neighbors, and their accuracy exceeded 90%. The "you only look once" detector and RetinaNet usually solved the problem of detecting surgical instruments - their accuracy was approximately 70%. The experts differed by more confident contact with tissues, higher bimanuality, smaller distance between the instrument tips, and relaxed and focused state of the mind. The average MERSQI score was 13.9 (from 18). There is growing interest in the use of ML in neurosurgical training. Most studies have focused on the evaluation of microsurgical skills in oncological neurosurgery and on the use of virtual simulators; however, other subspecialties, skills, and simulators are being investigated. Machine learning models effectively solve different neurosurgical tasks related to skill classification, object detection, and outcome prediction. Properly trained ML models outperform human efficacy. Further research on ML application in neurosurgery is needed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10143-023-02028-x | DOI Listing |
Sci Data
December 2024
Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, RI, 02912, USA.
In the past several years, a few cervical Pap smear datasets have been published for use in clinical training. However, most publicly available datasets consist of pre-segmented single cell images, contain on-image annotations that must be manually edited out, or are prepared using the conventional Pap smear method. Multicellular liquid Pap image datasets are a more accurate reflection of current cervical screening techniques.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
December 2024
Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: High triglyceride (TG) affects and is affected of other hematological factors. The determination of serum fasted triglycerides concentrations, as part of a lipid profile, is crucial key point in hematological factors and significantly affect various systemic diseases. This study was carried out to assess the potential relation between the concentration of TG and hematological factors.
View Article and Find Full Text PDFBMC Med Educ
December 2024
Department of Orthopedics, Guru Gobind Singh Medical College and Hospital, Faridkot, Punjab, 151203, India.
Generative Artificial Intelligence (AI), characterized by its ability to generate diverse forms of content including text, images, video and audio, has revolutionized many fields, including medical education. Generative AI leverages machine learning to create diverse content, enabling personalized learning, enhancing resource accessibility, and facilitating interactive case studies. This narrative review explores the integration of generative artificial intelligence (AI) into orthopedic education and training, highlighting its potential, current challenges, and future trajectory.
View Article and Find Full Text PDFBMC Public Health
December 2024
Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, Unity Health Toronto, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
Background: Machine learning (ML) is increasingly used in population and public health to support epidemiological studies, surveillance, and evaluation. Our objective was to conduct a scoping review to identify studies that use ML in population health, with a focus on its use in non-communicable diseases (NCDs). We also examine potential algorithmic biases in model design, training, and implementation, as well as efforts to mitigate these biases.
View Article and Find Full Text PDFAcad Radiol
December 2024
Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China (Y.T., Y.W., Y.Y., X.Q., Y.H., J.L.); Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China (J.L.). Electronic address:
Rationale And Objectives: To develop a radiomics nomogram based on clinical and magnetic resonance features to predict lymph node metastasis (LNM) in endometrial cancer (EC).
Materials And Methods: We retrospectively collected 308 patients with endometrial cancer (EC) from two centers. These patients were divided into a training set (n=155), a test set (n=67), and an external validation set (n=86).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!