The electrochemical conversion of oxygen to water is a crucial process required for renewable energy production, whereas its first two-electron step produces a versatile chemical and oxidant─hydrogen peroxide. Improving performance and widening the limited selection of the potential catalysts for this reaction is a step toward the implementation of clean-energy technologies. As silver is known as one of the most effective catalysts of oxygen reduction reaction (ORR), we have designed a suitable molecular precursor pathway for the selective synthesis of metallic (Ag), intermetallic (AgSb), and binary or ternary metal sulfide (AgS and AgSbS) nanomaterials by judicious control of reaction conditions. The decomposition of xanthate precursors under different reaction conditions in colloidal synthesis indicates that carbon-sulfur bond cleavage yields the respective metal sulfide nanomaterials. This is not the case in the presence of trioctylphosphine when the metal-sulfur bond is broken. The synthesized nanomaterials were applied as catalysts of oxygen reduction at the liquid-liquid and solid-liquid interfaces. Ag exhibits the best performance for electrochemical oxygen reduction, whereas the electrocatalytic performance of Ag and AgSb is comparable for peroxide reduction in an alkaline medium. Scanning electrochemical microscopy (SECM) analysis indicates that a flexible 2-electron to 4-electron ORR pathway has been achieved by transforming metallic Ag into intermetallic AgSb.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10230501 | PMC |
http://dx.doi.org/10.1021/acs.inorgchem.3c00978 | DOI Listing |
J Colloid Interface Sci
January 2025
School of Environment and Energy, South China University of Technology, Guangzhou 510006 China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510640 China. Electronic address:
Bimetallic catalysts have notable advantages in the field of persulfate activation owing to their intermetallic synergy. However, studies on stimulating the potential concentration effect through intermetallic coordination to enhance the electron transfer efficiency are limited. In this study, a cobalt (Co) and zinc (Zn) bimetallic yolk-shell structured high-efficiency peroxymonosulfate (PMS) catalyst (Z67@8-HCNF) was prepared by the derivatization of metal-organic backbone materials and was found to produce significant synergistic interactions between Co and Zn metals, which could be utilized to trigger the potential concentration effect to enhance the intermolecular electron transfer efficiency and achieve efficient PMS activation.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
We fabricated Co-based catalysts by the low-temperature thermal decomposition of R-Co intermetallics (R = Y, La, or Ce) to reduce the temperature of ammonia cracking for hydrogen production. The catalysts synthesized are nanocomposites of Co/RO with a metal-rich composition. In the Co/LaO catalyst derived from LaCo, Co nanoparticles of 10-30 nm size are enclosed by the LaO matrix.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Theoretical Physics Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
Extensive research on ultrashort laser-induced melting of noble metals like Au, Ag and Cu is available. However, studies on laser energy deposition and thermal damage of their alloys, which are currently attracting interest for energy harvesting and storage devices, are limited. This study investigates the melting damage threshold (DT) of three intermetallic alloys of Au and Cu (AuCu, AuCu and AuCu) subjected to single-pulse femtosecond laser irradiation, comparing them with their constituent metals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
The industrial advancement of downstream products resulting from the directed hydrogenation of maleic anhydride is hindered by the limitations related to the activity and stability of catalysts. The development of nonprecious metal intermetallic compounds, in which active sites are adjustable in the local structures and electronic properties embedded within a distinct framework, holds immense potential in enhancing catalytic efficacy and stability. Herein, we report that nickel-based silicides catalysts, RNiSi (R = Ca, La, and Y), afford high efficiency in the selective hydrogenation of maleic anhydride.
View Article and Find Full Text PDFChemistry
January 2025
The University of British Columbia, Department of Chemistry, 2036 Main Mall, V6T 1Z1, Vancouver, CANADA.
The field of platinum chemistry is ubiquitous in the research of anticancer drugs and new OLED materials. Within the vast library of existing compounds, the majority of work focuses on complexes in the +2 and +4 oxidation states, with comparatively few examples of PtIII complexes reported without bridging ligands. PtIII complexes with metal-metal bonding can be made by mild oxidation of PtII complexes having bis(phenylpyridine) ligands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!