fabrication of wearable devices through coating approaches is a promising solution for the fast deployment of wearable devices and more adaptable devices for different sensing demands. However, heat, solvent, and mechanical sensitivity of biological tissues, along with personal compliance, pose strict requirements for coating materials and methods. To address this, a biocompatible and biodegradable light-curable conductive ink and an all-in-one flexible system that conducts injection and photonic curing of the ink as well as monitoring of biophysiological information have been developed. The ink can be solidified through spontaneous phase changes and photonic cured to achieve a high mechanical strength of 7.48 MPa and an excellent electrical conductivity of 3.57 × 10 S/m. The flexible system contains elastic injection chambers embedded with specially designed optical waveguides to uniformly dissipate visible LED light throughout the chambers and rapidly cure the ink in 5 min. The resulting conductive electrodes offer intimate skin contact even with the existence of hair and work stably even under an acceleration of 8 g, leading to a robust wearable system capable of working under intense motion, heavy sweating, and varied surface morphology. Similar concepts may lead to various rapidly deployable wearable systems that offer excellent adaptability to different monitoring demands for the health tracking of large populations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c01902DOI Listing

Publication Analysis

Top Keywords

flexible system
12
wearable devices
8
ink
5
formation conductive
4
conductive epidermal
4
epidermal electrodes
4
electrodes fully
4
fully integrated
4
integrated flexible
4
system
4

Similar Publications

The expansion of single-cell analytical techniques has empowered the exploration of diverse biological questions at the individual cells. Droplet-based single-cell RNA sequencing (scRNA-seq) methods have been particularly widely used due to their high-throughput capabilities and small reaction volumes. While commercial systems have contributed to the widespread adoption of droplet-based scRNA-seq, their relatively high cost limits the ability to profile large numbers of cells and samples.

View Article and Find Full Text PDF

goChem: A Composable Library for Multi-Scale Computational Chemistry Data Analysis.

J Comput Chem

January 2025

Departmento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile.

Data analysis is a major task for Computational Chemists. The diversity of modeling tools currently available in Computational Chemistry requires the development of flexible analysis tools that can adapt to different systems and output formats. As a contribution to this need, we report the implementation of goChem, a versatile open-source library for multiscale analysis of computational chemistry data.

View Article and Find Full Text PDF

Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies.

View Article and Find Full Text PDF

We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.

View Article and Find Full Text PDF

The Internet of Things (IoT) and Industrial Internet of Things (IIoT) have drastically transformed industries by enhancing efficiency and flexibility but have also introduced substantial cybersecurity risks. The rise of zero-day attacks, which exploit unknown vulnerabilities, poses significant threats to these interconnected systems. Traditional signature-based intrusion detection systems (IDSs) are insufficient for detecting such attacks due to their reliance on pre-defined attack signatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!