African swine fever (ASF) has received great attention from the swine industry due to the pandemic and the lack of vaccines or effective treatments. In the present study, 13 African swine fever virus (ASFV) p54-specific nanobodies (Nbs) were successfully screened based on Bactrian camel immunization of p54 protein and phage display technology, and their reactivity with the p54 C-terminal domain (p54-CTD) was determined; however, only Nb8-horseradish peroxidase (Nb8-HRP) exhibited the best reactivity. Immunoperoxidase monolayer assay (IPMA) and immunofluorescence assay (IFA) results indicated that Nb8-HRP specifically reacted with ASFV-infected cells. Then, the possible epitopes of p54 were identified using Nb8-HRP. The results showed that Nb8-HRP could recognize p54-CTD truncated mutant p54-T1. Then, 6 overlapping peptides covering p54-T1 were synthesized to determine the possible epitopes. Dot blot and peptide-based enzyme-linked immunosorbent assay (ELISA) results suggested that one novel minimal linear B cell epitope, QQWVEV, which had never been reported before, was identified. Alanine-scanning mutagenesis revealed that QQWV was the core binding site for Nb8. Epitope QQWVEV was highly conserved among genotype II ASFV strains and could react with inactivated ASFV antibody-positive serum from naturally infected pigs, indicating that it was a natural linear B cell epitope. These findings provide valuable insights for vaccine design and p54 as an effective diagnostic tool. The ASFV p54 protein plays an important role in inducing neutralization antibodies after viral infection and is often used as a candidate protein for subunit vaccine development. The full understanding of the p54 protein epitope provides a sufficient theoretical basis for p54 as a vaccine candidate protein. The present study uses a p54-specific nanobody as a probe to identify a highly conserved antigenic epitope, QQWVEV, among different ASFV strains, and it can induce humoral immune responses in pigs. This is the first report using virus-specific nanobodies as a tool to identify some special epitopes that cannot be recognized by conventional monoclonal antibodies. This study opens up nanobodies as a new tool for identifying epitopes and also provides a theoretical basis for understanding p54-induced neutralizing antibodies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269858PMC
http://dx.doi.org/10.1128/spectrum.03362-22DOI Listing

Publication Analysis

Top Keywords

linear cell
12
cell epitope
12
african swine
12
swine fever
12
p54 protein
12
epitope qqwvev
12
p54
8
fever virus
8
highly conserved
8
asfv strains
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!