Charged excitations are electronic transitions that involve a change in the total charge of a molecule or material. Understanding the properties and reactivity of charged species requires insights from theoretical calculations that can accurately describe orbital relaxation and electron correlation effects in open-shell electronic states. In this Review, we describe the current state of algebraic diagrammatic construction (ADC) theory for simulating charged excitations and its recent developments. We start with a short overview of ADC formalism for the one-particle Green's function, including its single- and multireference formulations and extension to periodic systems. Next, we focus on the capabilities of ADC methods and discuss recent findings about their accuracy for calculating a wide range of excited-state properties. We conclude our Review by outlining possible directions for future developments of this theoretical approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.3c00251 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!