The observed increased risk of fracture after cancer radiation therapy is presumably due to a radiation-induced reduction in whole-bone strength. However, the mechanisms for impaired strength remain unclear, as the increased fracture risk is not fully explained by changes in bone mass. To provide insight, a small animal model was used to determine how much of this whole-bone weakening effect for the spine is attributable to changes in bone mass, structure, and material properties of the bone tissue and their relative effects. Further, because women have a greater risk of fracture after radiation therapy than men, we investigated if sex had a significant influence on bone's response to irradiation. Fractionated in vivo irradiation (10 × 3 Gy) or sham irradiation (0 Gy) was administered daily to the lumbar spine in twenty-seven 17-week-old Sprague-Dawley rats (n = 6-7/sex/group). Twelve weeks after final treatment, animals were euthanized, and lumbar vertebrae (L and L ) were isolated. Using a combination of biomechanical testing, micro-CT-based finite element analysis, and statistical regression analysis, we separated out the effect of mass, structural, and tissue material changes on vertebral strength. Compared with the sham group (mean ± SD strength = 420 ± 88 N), the mean strength of the irradiated group was lower by 28% (117 N/420 N, p < 0.0001). Overall, the response of treatment did not differ with sex. By combining results from both general linear regression and finite element analyses, we calculated that mean changes in bone mass, structure, and material properties of the bone tissue accounted for 56% (66 N/117 N), 20% (23 N/117 N), and 24% (28 N/117 N), respectively, of the overall change in strength. As such, these results provide insight into why an elevated clinical fracture risk for patients undergoing radiation therapy is not well explained by changes in bone mass alone. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10524463PMC
http://dx.doi.org/10.1002/jbmr.4828DOI Listing

Publication Analysis

Top Keywords

changes bone
12
bone mass
12
relative effects
8
mass structure
8
tissue material
8
vertebral strength
8
risk fracture
8
radiation therapy
8
strength
5
effects radiation-induced
4

Similar Publications

Objective: Spinal fusion is a commonly performed surgical procedure used to relieve pain, deformity, and instability of various spinal pathologies. Although there have been attempts to standardize spinal fusion assessment radiologically, there is currently no unified definition that also considers clinical symptomology. This review attempts to create a more holistic and standardized definition of spinal fusion.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is widely used as a bone graft. However, information on the head-to-head osteoinductivity and in vivo performance of micro- and nanosized natural and synthetic HA is still lacking. Here, we fabricated nanosized bovine HA (nanoBHA) by using a wet ball milling method and compared its in vitro and in vivo performance with microsized BHA, nanosized synthetic HA (nanoHA), and microsized synthetic HA (HA).

View Article and Find Full Text PDF

Background: To date, no studies have evaluated the longevity of calcaneal lengthening osteotomy (CLO) in patients with cerebral palsy (CP) and pes planovalgus. This study aimed to explore the changes in foot alignment following CLO in patients with CP, utilizing both radiographic evaluations and dynamic foot-pressure assessments.

Methods: A retrospective study of 282 feet in 180 ambulatory patients was performed.

View Article and Find Full Text PDF

Context: Trabecular bone score (TBS), a gray-level texture index derived from lumbar spine (LS) dual-energy x-ray absorptiometry (DXA) scans, is decreased in patients with diabetes and is associated with increased fracture risk, independent of areal bone mineral density (aBMD), but potentially influenced by abdominal fat tissue.

Objective: Evaluate effect of romosozumab (210 mg monthly) for 12 months followed by alendronate (70 mg weekly) for 24 months vs alendronate alone (70 mg weekly) for 36 months on LS aBMD and TBS in women with type 2 diabetes (T2D) enrolled in the ARCH study.

Methods: This post hoc analysis included women from ARCH who had T2D at baseline and LS DXA scans at baseline and ≥1 postbaseline visit (romosozumab-to-alendronate, n = 165; alendronate-to-alendronate, n = 195).

View Article and Find Full Text PDF

The purpose of the study was to investigate the effects of exercise training on the bone marrow immune microenvironment and on minimal residual disease of multiple myeloma patients who completed first-line induction treatment. Eight multiple myeloma patients underwent 5 months of exercise training along with standard medical treatment. Eight age- and sex-matched patients who received medical treatment only, served as controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!