AI Article Synopsis

  • The study examines energy conversion in membrane transport of glucose solutions, focusing on the production of entropy due to non-equilibrium thermodynamics.
  • Researchers determined transport parameters for different synthetic polymer biomembranes using a formalism that integrates various equations related to entropy production.
  • The findings reveal that the equations describing energy dissipation in these systems take a second-degree form, indicating significant differences in energy characteristics between the two types of membranes tested.

Article Abstract

Background: A basic parameter in non-equilibrium thermodynamics is the production of entropy (S-entropy), which is a consequence of the irreversible processes of mass, charge, energy, and momentum transport in various systems. The product of S-entropy production and absolute temperature (T) is called the dissipation function and is a measure of energy dissipation in non-equilibrium processes.

Objectives: This study aimed to estimate energy conversion in membrane transport processes of homogeneous non-electrolyte solutions. The stimulus version of the R, L, H, and P equations for the intensity of the entropy source achieved this purpose.

Material And Methods: The transport parameters for aqueous glucose solutions through Nephrophan® and Ultra-Flo 145 dialyser® synthetic polymer biomembranes were experimentally determined. Kedem-Katchalsky-Peusner (KKP) formalism was used for binary solutions of non-electrolytes, with Peusner coefficients introduced.

Results: The R, L, H, and P versions of the equations for the S-energy dissipation were derived for the membrane systems based on the linear non-equilibrium Onsager and Peusner network thermodynamics. Using the equations for the S-energy and the energy conversion efficiency factor, equations for F-energy and U-energy were derived. The S-energy, F-energy and U-energy were calculated as functions of osmotic pressure difference using the equations obtained and presented as suitable graphs.

Conclusions: The R, L, H, and P versions of the equations describing the dissipation function had the form of second-degree equations. Meanwhile, the S-energy characteristics had the form of second-degree curves located in the 1st and 2nd quadrants of the coordinate system. These findings indicate that the R, L, H, and P versions of S-energy, F-energy and U-energy are not equivalent for the Nephrophan® and Ultra-Flo 145 dialyser® membranes.

Download full-text PDF

Source
http://dx.doi.org/10.17219/pim/161743DOI Listing

Publication Analysis

Top Keywords

energy conversion
12
equations s-energy
12
f-energy u-energy
12
polymer biomembranes
8
equations
8
dissipation function
8
nephrophan® ultra-flo
8
ultra-flo 145
8
145 dialyser®
8
versions equations
8

Similar Publications

The electrochemical reduction of CO2 to CH4 is promising for carbon neutrality and renewable energy storage but confronts low CH4 selectivity, especially at high current densities. The key challenge lies in promoting *CO intermediate and *H coupling while minimizing side reactions including C-C coupling or H-H coupling, which is particularly difficult at high current density due to abundant intermediates. Here we report a cooperative strategy to address this challenge using Cu-based catalysts comprising Cu-N coordination polymer and CuO component that can simultaneously manage the key intermediates *CO and *H.

View Article and Find Full Text PDF

GC-DFT-Based Dynamic Product Distribution Reveals Enhanced CO-to-Methanol Electrocatalysis Durability by Heterogeneous CoPc.

J Phys Chem Lett

December 2024

School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, Hefei 230009, China.

Heterogeneous cobalt phthalocyanine has emerged as a promising molecular catalyst for electrochemical reduction of CO to methanol. Boosting both electrocatalytic durability and selectivity remains a great challenge, which is more difficult with unknown regulation factors for the HER side reaction. Herein, to discover the key to balancing the durability and selectivity, as well as HER regulation, we carried out GC-DFT calculations, based on which dynamic product distribution modeling was conducted to visually present the variation of the product distribution within the applied voltage range.

View Article and Find Full Text PDF

Grain-Boundary-Rich Pt/CoO Nanosheets for Solar-Driven Overall Water Splitting.

Inorg Chem

December 2024

Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.

Interfacial engineering is considered an effective strategy to improve the electrochemical water-splitting activity of catalysts by modulating the local electronic structure to expose more active sites. Therefore, we report a platinum-cobaltic oxide nanosheets (Pt/CoO NSs) with plentiful grain boundary as the efficient bifunctional electrocatalyst for water splitting. The Pt/CoO NSs exhibit a low overpotential of 55 and 201 mV at a current density of 10 mA cm for the hydrogen evolution reaction and oxygen evolution reaction in 1.

View Article and Find Full Text PDF

High-Performance and Anti-Freezing Moisture-Electric Generator Combining Ion-Exchange Membrane and Ionic Hydrogel.

Small

December 2024

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China.

Moisture-electric generators (MEGs), which convert moisture chemical potential energy into electrical power, are attracting increasing attention as clean energy harvesting and conversion technologies. However, existing devices suffer from inadequate moisture trapping, intermittent electric output, suboptimal performance at low relative humidity (RH), and limited ion separation efficiency. This study designs an ionic hydrogel MEG capable of continuously generating energy with enhanced selective ion transport and sustained ion-to-electron current conversion at low RH by integrating an ion-exchange membrane (IEM-MEG).

View Article and Find Full Text PDF

Achieving efficient and sustainable hydrogen production through photocatalysis is highly promising yet remains a significant challenge, especially when replacing costly noble metals with more abundant alternatives. Conversion efficiency with noble-metal-free alternatives is frequently limited by high charge recombination rates, mainly due to the sluggish transfer and inefficient consumption of photo-generated holes. To address these challenges, a rational design of noble-metal-free cocatalysts as oxidative sites is reported to facilitate hole consumption, leading to markedly increased H yield rates without relying on expensive noble metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!