A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessions1jdmcgkrjshcf7k395uju7n47k9cep7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design of a Machine Learning System to Predict the Thickness of a Melanoma Lesion in a Non-Invasive Way from Dermoscopic Images. | LitMetric

AI Article Synopsis

  • - The study focused on creating a non-invasive machine learning system to predict melanoma lesion thickness using dermoscopic images, which can help identify urgent treatment cases early on.
  • - A convolutional neural network (EfficientNet) was employed to classify melanoma images into three thickness categories, utilizing techniques to balance the dataset and improve accuracy through image augmentation and cross-validation.
  • - The model achieved 71% balanced accuracy with a small dataset and represents a new standard for melanoma classification, suggesting that further improvements can be made by increasing the dataset size and avoiding previous evaluation errors.

Article Abstract

Objectives: Melanoma is the deadliest form of skin cancer, but it can be fully cured through early detection and treatment in 99% of cases. Our aim was to develop a non-invasive machine learning system that can predict the thickness of a melanoma lesion, which is a proxy for tumor progression, through dermoscopic images. This method can serve as a valuable tool in identifying urgent cases for treatment.

Methods: A modern convolutional neural network architecture (EfficientNet) was used to construct a model capable of classifying dermoscopic images of melanoma lesions into three distinct categories based on thickness. We incorporated techniques to reduce the impact of an imbalanced training dataset, enhanced the generalization capacity of the model through image augmentation, and utilized five-fold cross-validation to produce more reliable metrics.

Results: Our method achieved 71% balanced accuracy for three-way classification when trained on a small public dataset of 247 melanoma images. We also presented performance projections for larger training datasets.

Conclusions: Our model represents a new state-of-the-art method for classifying melanoma thicknesses. Performance can be further optimized by expanding training datasets and utilizing model ensembles. We have shown that earlier claims of higher performance were mistaken due to data leakage during the evaluation process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209725PMC
http://dx.doi.org/10.4258/hir.2023.29.2.112DOI Listing

Publication Analysis

Top Keywords

dermoscopic images
12
machine learning
8
learning system
8
system predict
8
predict thickness
8
thickness melanoma
8
melanoma lesion
8
melanoma
6
design machine
4
lesion non-invasive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!