Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The problem tackled is the determination of sample size for a given level and power in the context of a simple linear regression model. The standard approach deals with planned experiments in which the predictor X is observed for a number n of times and the corresponding observations on the response variable Y are to be drawn. The statistic that is used is built on the least squares' estimator of the slope parameter. Its conditional distribution given the data on the predictor X is utilized for sample size calculations. This is problematic. The sample size n is already presaged and the data on X is fixed. In unplanned experiments, in which both X and Y are to be sampled simultaneously, we do not have data on the predictor X yet. This conundrum has been discussed in several papers and books with no solution proposed. We overcome the problem by determining the exact unconditional distribution of the test statistic in the unplanned case. We have provided tables of critical values for given levels of significance following the exact distribution. In addition, we show that the distribution of the test statistic depends only on the effect size, which is defined precisely in the paper.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137477 | PMC |
http://dx.doi.org/10.3390/e25040611 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!