Angiogenesis is the physiological process of developing new blood vessels to facilitate the delivery of oxygen and nutrients to meet the functional demands of growing tissues. It also plays a vital role in the development of neoplastic disorders. Pentoxifylline (PTX) is a vasoactive synthetic methyl xanthine derivative used for decades to manage chronic occlusive vascular disorders. Recently, it has been proposed that PTX might have an inhibitory effect on the angiogenesis process. Here, we reviewed the modulatory effects of PTX on angiogenesis and its potential benefits in the clinical setting. Twenty-two studies met the inclusion and exclusion criteria. While sixteen studies demonstrated that pentoxifylline had an antiangiogenic effect, four suggested it had a proangiogenic effect, and two other studies showed it did not affect angiogenesis. All studies were either in vivo animal studies or in vitro animal and human cell models. Our findings suggest that pentoxifylline may affect the angiogenic process in experimental models. However, there is insufficient evidence to establish its role as an anti-angiogenesis agent in the clinical setting. These gaps in our knowledge regarding how pentoxifylline is implicated in host-biased metabolically taxing angiogenic switch may be via its adenosine A2BAR G protein-coupled receptor (GPCR) mechanism. GPCR receptors reinforce the importance of research to understand the mechanistic action of these drugs on the body as promising metabolic candidates. The specific mechanisms and details of the effects of pentoxifylline on host metabolism and energy homeostasis remain to be elucidated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136437PMC
http://dx.doi.org/10.3390/cells12081199DOI Listing

Publication Analysis

Top Keywords

protein-coupled receptor
8
clinical setting
8
angiogenesis
5
pentoxifylline
5
studies
5
parsimonious pentoxifylline
4
pentoxifylline angiogenesis
4
angiogenesis novel
4
novel pentoxifylline-biased
4
pentoxifylline-biased adenosine
4

Similar Publications

Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology.

View Article and Find Full Text PDF

Dimethyltryptamine (DMT) and ibogaine elicit membrane effects in HEK cells transiently transfected with the human 5-HT2A receptor.

Brain Res

December 2024

Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark. Electronic address:

Psychedelics show promise in treating psychiatric disorders. Therapeutic effects appear to involve activation of the 5-Hydroxytryptamine 2A receptor (5-HTR), a G protein-coupled receptor (GPCR). Several SNPs of the 5-HTR naturally occur, which are associated with differences in receptor function and altered responsiveness to treatments.

View Article and Find Full Text PDF

Radiotherapy resistance is one of the main reasons for the dismal clinical outcome of patients with esophageal squamous cell carcinoma (ESCC). Therefore, clarifying the targets and molecular mechanisms of radiotherapy resistance in ESCC is of great theoretical and clinical significance to enhance the efficacy of radiotherapy. In this study, GPR37 was identified as a key factor facilitating ESCC radiosensitization.

View Article and Find Full Text PDF

We describe a structural and functional study of the G protein-coupled apelin receptor, which binds two endogenous peptide ligands, apelin and Elabela/Toddler (ELA), to regulate cardiovascular development and function. Characterisation of naturally occurring apelin receptor variants from the UK Genomics England 100,000 Genomes Project, and AlphaFold2 modelling, identifies T89 as important in the ELA binding site, and R168 as forming extensive interactions with the C-termini of both peptides. Base editing to introduce an R/H168 variant into human stem cell-derived cardiomyocytes demonstrates that this residue is critical for receptor binding and function.

View Article and Find Full Text PDF

Background/aim: G protein-coupled estrogen receptor 1 (GPER1) appears to play a tumor-suppressive role in cervical squamous cell carcinoma (CSCC)GPER1 suppression leads to significantly increased expression of serpin family E member 1 (SERPINE1)/protein plasminogen activator inhibitor type 1 (PAI-1). The question arises, what role does SERPINE1/PAI-1 play in GPER1-dependent tumorigenic potential of CSCC.

Materials And Methods: SiHa and C33A CSCC cells were treated with GPER1 agonist G1 or antagonist G36.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!