A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving Schwann Cell Differentiation from Human Adipose Stem Cells with Metabolic Glycoengineering. | LitMetric

Schwann cells (SCs) are myelinating cells that promote peripheral nerve regeneration. When nerve lesions form, SCs are destroyed, ultimately hindering nerve repair. The difficulty in treating nerve repair is exacerbated due to SC's limited and slow expansion capacity. Therapeutic use of adipose-derived stem cells (ASCs) is emerging in combating peripheral nerve injury due to these cells' SC differentiation capability and can be harvested easily in large numbers. Despite ASC's therapeutic potential, their transdifferentiation period typically takes more than two weeks. In this study, we demonstrate that metabolic glycoengineering (MGE) technology enhances ASC differentiation into SCs. Specifically, the sugar analog AcManNTProp (TProp), which modulates cell surface sialylation, significantly improved ASC differentiation with upregulated SC protein S100β and p75NGFR expression and elevated the neurotrophic factors nerve growth factor beta (NGFβ) and glial cell-line-derived neurotrophic factor (GDNF). TProp treatment remarkably reduced the SC transdifferentiation period from about two weeks to two days in vitro, which has the potential to improve neuronal regeneration and facilitate future use of ASCs in regenerative medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136940PMC
http://dx.doi.org/10.3390/cells12081190DOI Listing

Publication Analysis

Top Keywords

stem cells
8
metabolic glycoengineering
8
peripheral nerve
8
nerve repair
8
transdifferentiation period
8
asc differentiation
8
nerve
6
improving schwann
4
schwann cell
4
differentiation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!