Intrauterine growth restriction (IUGR) and preeclampsia (PE) are placental pathologies known to complicate pregnancy and cause neonatal disorders. To date, there is a limited number of studies on the genetic similarity of these conditions. DNA methylation is a heritable epigenetic process that can regulate placental development. Our objective was to identify methylation patterns in placental DNA from normal, PE and IUGR-affected pregnancies. DNA was extracted, and bisulfite was converted, prior to being hybridized for the methylation array. Methylation data were SWAN normalized and differently methylated regions were identified using applications within the USEQ program. UCSC's Genome browser and Stanford's GREAT analysis were used to identify gene promoters. The commonality among affected genes was confirmed by Western blot. We observed nine significantly hypomethylated regions, two being significantly hypomethylated for both PE and IGUR. Western blot confirmed differential protein expression of commonly regulated genes. We conclude that despite the uniqueness of methylation profiles for PE and IUGR, the similarity of some methylation alterations in pathologies could explain the clinical similarities observed with these obstetric complications. These results also provide insight into the genetic similarity between PE and IUGR and suggest possible gene candidates plausibly involved in the onset of both conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136447PMC
http://dx.doi.org/10.3390/cells12081130DOI Listing

Publication Analysis

Top Keywords

intrauterine growth
8
growth restriction
8
genetic similarity
8
western blot
8
methylation
6
altered epigenetic
4
epigenetic profiles
4
profiles placenta
4
placenta preeclamptic
4
preeclamptic intrauterine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!