Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antimicrobial blue light (aBL) therapy is a novel non-antibiotic antimicrobial approach which works by generating reactive oxygen species. It has shown excellent antimicrobial ability to various microbial pathogens in many studies. However, due to the variability of aBL parameters (e.g., wavelength, dose), there are differences in the antimicrobial effect across different studies, which makes it difficult to form treatment plans for clinical and industrial application. In this review, we summarize research on aBL from the last six years to provide suggestions for clinical and industrial settings. Furthermore, we discuss the damage mechanism and protection mechanism of aBL therapy, and provide a prospect about valuable research fields related to aBL therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135966 | PMC |
http://dx.doi.org/10.3390/biomedicines11041197 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!