Evaluation of the Photoactivation Effect of 3% Hydrogen Peroxide in the Disinfection of Dental Implants: In Vitro Study.

Biomedicines

Department of Oral Surgery, School of Dental Medicine, University Hospital Centre Zagreb, University of Zagreb, 10000 Zagreb, Croatia.

Published: March 2023

Photoactivation of 3% hydrogen peroxide with a 445 nm diode laser represents a relatively new, insufficiently researched antimicrobial method in the treatment of peri-implantitis. The purpose of this work is to evaluate the effect of photoactivation of 3% hydrogen peroxide with a 445 nm diode laser, and to compare the obtained results with 0.2% chlorhexidine treatment and 3% hydrogen peroxide treatment without photoactivation, in vitro, on the surface of dental implants contaminated with and biofilms. Previously, 80 infected titanium implants with and cultures were divided into four groups: G1-negative control (no treatment), G2-positive control (0.2% chlorhexidine), G3 (3% hydrogen peroxide), and G4 (photoactivated 3% hydrogen peroxide). The number of viable microbes in each sample was determined by the colony forming unit (CFU) count. The results were statistically processed and analyzed, showing a statistically significant difference across all groups compared to the negative control (G1), and the absence of a statistically significant difference between groups G1-G3. The new antimicrobial treatment, according to the results, could be worthy of further analysis and research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136142PMC
http://dx.doi.org/10.3390/biomedicines11041002DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
24
photoactivation hydrogen
12
dental implants
8
peroxide 445
8
445 diode
8
diode laser
8
02% chlorhexidine
8
statistically difference
8
difference groups
8
hydrogen
6

Similar Publications

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

The integration of barcode technology with smartphones on paper-based analytical devices (PADs) presents a promising approach to bridging manual detection with digital interpretation and data storage. However, previous studies of 1D barcode approaches have been limited to providing only a "yes/no" response for analyte detection. Herein, a method of using barcode readout for semiquantitative signal detection on PADs has been achieved through the integration of barcode technology with a distance-based measurement concept on PADs.

View Article and Find Full Text PDF

Ni(II)-hydrazineylpyridine (Ni(II)-PyH)-catalyzed regioselective synthesis of α-benzyl substituted β-hydroxy ketones from α,β-unsaturated ketones and alcohols is reported a Fenton free-radical reaction. This protocol enables facile access to desired products in good to excellent yields in 12 h using toluene solvent at room temperature to 100 °C. The structural analysis of the products was confirmed by H, C-NMR, GC-MS, and HRMS data.

View Article and Find Full Text PDF

In the last few years, many efforts have been devoted to the recovery and valorization of olive oil by-products because of their potentially high biological value. The olive mill wastewater (OMWW), a dark-green brown colored liquid that mainly consists of fruit vegetation water, is particularly exploited in this regard for its great content in phenolic compounds with strong antioxidant properties. In our previous work, we produced different OMWW fractions enriched in hydroxytyrosol- and hydroxytyrosol/oleuropein (i.

View Article and Find Full Text PDF

The layer-stacking mode of a two-dimensional (2D) material plays a dominant role either in its topology or properties, but remains challenging to control. Herein, we developed alkali-metal ion-regulating synthetic control on the stacking structure of a vinylene-linked covalent triazine framework (termed spc-CTF) for improving hydrogen peroxide (HO) photoproduction. Upon the catalysis of EtONa in Knoevenagel polycondensation, a typical eclipsed stacking mode (spc-CTF-4@AA) was built, while a staggered one (spc-CTF-4@AB) was constructed using LiOH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!