Collagen membranes are routinely used in oral surgery for bone regeneration. Despite their numerous advantages, such as stimulating bone growth, bacterial contamination still remains one of the disadvantages of membrane use. Thus, we assessed the biocompatibility and osteogenic and antibacterial properties of a collagen membrane (OsteoBiol) modified with chitosan (CHI) and hydroxyapatite nanoparticles (HApNPs). Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR FT-IR), X-ray powder diffraction (XRD), and field emission scanning electron microscopy (FE-SEM) were performed for membrane characterization. Biocompatibility was assessed on dental pulp stem cells (DPSCs) by an MTT assay, while the osteogenic effect was assessed by an ALP activity assay and qPCR analysis of osteogenic markers (BMP4, ALP, RUNX2, and OCN). Antimicrobial properties were investigated by counting colony-forming units (CFUs) of , and on membranes and in the surrounding medium. Membranes showed no cytotoxicity. ALP activity was higher and ALP, BMP4, and OCN genes were up-regulated in DPSCs on modified membranes compared to unmodified membranes. The CFUs were reduced on modified membranes and in the medium. Modified membranes showed great biocompatibility and a high osteoinductive effect. Additionally, they showed antimicrobial and antibiofilm effects against periopathogens. It can be concluded that the incorporation of CHI and hydroxyapatite nanoparticles in collagen membranes may be advantageous to promote osteogenesis and reduce bacterial adhesion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135971 | PMC |
http://dx.doi.org/10.3390/biom13040579 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!