Potential toxicity assessment of mycotoxin fusaric acid with the spectral shift profile on DNA.

Environ Sci Pollut Res Int

Department of Biology, Faculty of Arts and Sciences, Giresun University, Giresun, Türkiye.

Published: June 2023

In this study, the multiple toxicities induced by three different doses (1, 5, and 10 μM) of fusaric acid (FA), a mycotoxin, was investigated with Allium test. Physiological (percent germination, root number, root length, and weight gain), cytogenetic (micronucleus = MN, chromosomal abnormalities = CAs, and mitotic index = MI), biochemical (proline level, malondialdehyde = MDA level, catalase = CAT activity, and superoxide dismutase = SOD activity), and anatomical parameters were used as indicators of toxicity. Allium cepa L. bulbs were divided into four groups as one control and three applications. The bulbs in the control group were germinated with tap water for 7 days, and the bulbs in the treatment groups were germinated with three different doses of FA for 7 days. As a result, FA exposure caused a decrease in all physiological parameters examined at all three doses. Besides, all FA doses caused a decrease in MI and an increase in the frequency of MN and the number of CAs. FA promoted CAs such as nucleus with vacuoles, nucleus buds, irregular mitosis, bridge, and misdirection in root meristem cells. DNA and FA interactions, which are the possible causes of genotoxic effects, were examined by spectral analysis, and FA could interact with DNA through intercalation, causing bathochromic and hypochromic shifts in the spectrum. FA also causes toxicity by inducing oxidative stress in cells, confirming this; dose-related increases in root MDA and proline levels were measured as a result of FA exposure. In the root SOD and CAT enzyme activities, increases up to 5 μM doses and decreases at 10 μM doses were measured. FA exposure induced anatomical damage such as necrosis, epidermis cell damage, flattened cell nucleus, thickening of the cortex cell wall, and unclear vascular tissue in root tip meristem cells. As a result, FA caused a comprehensive toxicity by showing an inhibitory effect in A. cepa test material, and the Allium test was a very useful test in determining this toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-27436-wDOI Listing

Publication Analysis

Top Keywords

three doses
12
fusaric acid
8
allium test
8
result exposure
8
caused decrease
8
root meristem
8
meristem cells
8
μm doses
8
doses
6
root
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!