CSF Synaptic Biomarkers in AT(N)-Based Subgroups of Lewy Body Disease.

Neurology

From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy.

Published: July 2023

Background And Objectives: Patients with Lewy body disease (LBD) often show a co-occurring Alzheimer disease (AD) pathology. CSF biomarkers allow the detection in vivo of AD-related pathologic hallmarks included in the amyloid-tau-neurodegeneration (AT(N)) classification system. Here, we aimed to investigate whether CSF biomarkers of synaptic and neuroaxonal damage are correlated with the presence of AD copathology in LBD and can be useful to differentiate patients with LBD with different AT(N) profiles.

Methods: We retrospectively measured CSF levels of AD core biomarkers (Aβ42/40 ratio, phosphorylated tau protein, and total tau protein) and of synaptic (β-synuclein, α-synuclein, synaptosomal-associated protein 25 [SNAP-25], and neurogranin) and neuroaxonal proteins (neurofilament light chain [NfL]) in 28 cognitively unimpaired participants with nondegenerative neurologic conditions and 161 participants with a diagnosis of either LBD or AD (at both mild cognitive impairment, AD-MCI, and dementia stages, AD-dem). We compared CSF biomarker levels in clinical and AT(N)-based subgroups.

Results: CSF β-synuclein, α-synuclein, SNAP-25, neurogranin, and NfL levels did not differ between LBD (n = 101, age 67.2 ± 7.8 years, 27.7% females) and controls (age 64.8 ± 8.6 years, 39.3% females) and were increased in AD (AD-MCI: n = 30, AD-dem: n = 30, age 72.3 ± 6.0 years, 63.3% females) compared with both groups ( < 0.001 for all comparisons). In LBD, we found increased levels of synaptic and neuroaxonal degeneration biomarkers in patients with A+T+ (LBD/A+T+) than with A-T- profiles (LBD/A-T-) ( < 0.01 for all), and β-synuclein showed the highest discriminative accuracy between the 2 groups (area under the curve 0.938, 95% CI 0.884-0.991). CSF β-synuclein ( = 0.0021), α-synuclein ( = 0.0099), and SNAP-25 concentrations ( = 0.013) were also higher in LBD/A+T+ than in LBD/A+T- cases, which had synaptic biomarker levels within the normal range. CSF α-synuclein was significantly decreased only in patients with LBD with T- profiles compared with controls ( = 0.0448). Moreover, LBD/A+T+ and AD cases did not differ in any biomarker level.

Discussion: LBD/A+T+ and AD cases showed significantly increased CSF levels of synaptic and neuroaxonal biomarkers compared with LBD/A-T- and control subjects. Patients with LBD and AT(N)-based AD copathology showed, thus, a distinct signature of synaptic dysfunction from other LBD cases.

Classification Of Evidence: This study provides Class II evidence that CSF levels of β-synuclein, α-synuclein, SNAP-25, neurogranin, and NfL are higher in patients with AD than in patients with LBD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10351307PMC
http://dx.doi.org/10.1212/WNL.0000000000207371DOI Listing

Publication Analysis

Top Keywords

patients lbd
16
synaptic neuroaxonal
12
csf levels
12
β-synuclein α-synuclein
12
csf
10
lbd
10
lewy body
8
body disease
8
csf biomarkers
8
tau protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!