Prefilled syringes are commonly used combination products for parenteral drug and vaccine administration. The characterization of these devices is through functionality testing, such as injection and extrusion force performance. This testing is typically completed by measuring these forces in a nonrepresentative environment (i.e., dispensed in-air) or route of administration conditions. Although injection tissue may not always be feasible or accessible for use, questions from the health authorities make it increasingly important to understand the impact of tissue back pressure on device functionality. Particularly for injectables containing larger volumes and higher viscosities, which can widely impact injection and user experience. This work evaluates a comprehensive, safe, and cost-effective in situ testing model to characterize extrusion force while accounting for the variable range of opposing forces (i.e., back pressure) experienced by the user during injection into live tissue with a novel test configuration. Due to the variability of back pressure presented by human tissue for both subcutaneous and intramuscular injections, tissue back pressure was simulated (0 psi-13.1 psi) using a controlled, pressurized injection system. Testing was conducted across different syringe sizes (2.25 mL, 1.5 mL, and 1.0 mL) and types (Luer lock and stake needle) with two simulated drug product viscosities product (1 cP and 20 cP). Extrusion force was measured using a Texture Analyzer mechanical testing instrument with crosshead speeds of 100 mm/min and 200 mm/min. The results demonstrated that there is a contribution of increasing back pressure on extrusion force across all syringe types, viscosities, and injection speeds that can be predicted using the proposed empirical model. Moreover, this work demonstrated that the factors that largely influence the average and maximum extrusion force during injection are syringe and needle geometries, viscosity, and back pressure. This understanding of the device usability may aid in the development of more robust prefilled syringe designs to minimize use-related risks.

Download full-text PDF

Source
http://dx.doi.org/10.5731/pdajpst.2021.012654DOI Listing

Publication Analysis

Top Keywords

extrusion force
20
prefilled syringe
8
injection
8
tissue pressure
8
pressure
7
force
6
testing
6
syringe
5
extrusion
5
tissue
5

Similar Publications

Addressing the high cost and long cycle associated with the multistep digital restoration process involving 3D printing technology, we proposed the 3D pen as an innovative strategy for rapid bone repair. Capitalizing on the low melting point characteristic of polycaprolactone (PCL), we introduced, for the first time, the novel concept of directly constructing scaffolds at bone defect sites using 3D pens. In this in vitro study, we meticulously evaluated both the mechanical and biological properties of 3D pen-printed PCL scaffolds with six distinct textures: unidirectional (UNI) (0°, 45°, 90°), bidirectional (BID) (-45°/45°, 0°/90°), and concentric (CON).

View Article and Find Full Text PDF

Association between meniscal extrusion and disease severity in knee osteoarthritis: a retrospective case-control study.

BMC Musculoskelet Disord

December 2024

Department of Orthopedics, The Second Affiliated Hospital of Air Force Military Medical University (Tangdu Hospital), 569 Xinsi Road, Baqiao District, Xi'an City, Shaanxi Province, 710000, China.

Objective: To explore the relationship between meniscus compression and the severity of knee osteoarthritis.

Materials And Methods: A retrospective case-control study included 95 patients with knee osteoarthritis (OA) admitted to our hospital from April 2021 to July 2023, who were grouped into slight protrusion of meniscus group (n = 48) and severe protrusion of meniscus group (n = 47) according to the degree of meniscal extrusion. Various parameters, including Kellgren/Lawrence classification, imaging findings, cartilage damage grading, physical function assessments, and correlation analyses, were used to evaluate the relationship between meniscal extrusion and disease progression.

View Article and Find Full Text PDF

Environmental mechanical forces, such as cell membrane stress, cell extrusion, and stretch, have been proven to affect cell growth and migration. Piezo1, a mechanosensitive channel protein, responds directly to endogenous or exogenous mechanical stimuli. Here, we explored the Piezo1 distribution and microfilament morphological changes induced by mechanical forces in the tumor and normal cells.

View Article and Find Full Text PDF

Magnetic Field-Induced Control of Crystal Orientation in Porous CuNi Films for Enhanced Electrocatalytic Hydrogen Evolution.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Near-Net Forming of Light Metals of Liaoning Province, Dalian Jiaotong University, Dalian 116028, China.

Porous CuNi films are promising candidates for electrocatalytic water splitting, with their catalytic performance largely influenced by the crystallographic structure and chemical state. In this study, by employing a magnetic field-controlled bubble template-assisted electrodeposition method, CuNi films with a preferred Ni(111) crystal orientation were synthesized. Moreover, adjusting the magnetic field direction during deposition can affect the degree of preferred orientation and, consequently, the electrochemical activity of the films.

View Article and Find Full Text PDF

Design of semi-open prosthetic socket with constant force for lower limb.

Prosthet Orthot Int

December 2024

School of Intelligent Rehabilitation Engineering, Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China.

Background: Prosthetic socket is a key component of the prosthesis for clinical application; its performance directly affects the adaptation of the residual limb to the prosthetic socket. There are long-term and short-term volume fluctuation of the residual limb. The volume fluctuation of the residual limb will lead to the pressure mismatch at the interface of the residual limb and the prosthetic socket, which will cause a series of skin and fit problems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!