Sphingosine-1-phosphate (S1P) receptors control endothelial cell proliferation, migration, and survival. Evidence of the ability of S1P receptor modulators to influence multiple endothelial cell functions suggests their potential use for antiangiogenic effect. The main purpose of our study was to investigate the potential of siponimod for the inhibition of ocular angiogenesis in vitro and in vivo. We investigated the effects of siponimod on the metabolic activity (thiazolyl blue tetrazolium bromide assay), cell toxicity (lactate dehydrogenase release), basal proliferation and growth factor-induced proliferation (bromodeoxyuridine assay), and migration (transwell migration assay) of human umbilical vein endothelial cells (HUVEC) and retinal microvascular endothelial cells (HRMEC). The effects of siponimod on HRMEC monolayer integrity, barrier function under basal conditions, and tumor necrosis factor alpha (TNF-)-induced disruption were assessed using the transendothelial electrical resistance and fluorescein isothiocyanate-dextran permeability assays. Siponimod's effect on TNF--induced distribution of barrier proteins in HRMEC was investigated using immunofluorescence. Finally, the effect of siponimod on ocular neovascularization in vivo was assessed using suture-induced corneal neovascularization in albino rabbits. Our results show that siponimod did not affect endothelial cell proliferation or metabolic activity but significantly inhibited endothelial cell migration, increased HRMEC barrier integrity, and reduced TNF--induced barrier disruption. Siponimod also protected against TNF--induced disruption of claudin-5, zonula occludens-1, and vascular endothelial-cadherin in HRMEC. These actions are mainly mediated by sphingosine-1-phosphate receptor 1 modulation. Finally, siponimod prevented the progression of suture-induced corneal neovascularization in albino rabbits. In conclusion, the effects of siponimod on various processes known to be involved in angiogenesis support its therapeutic potential in disorders associated with ocular neovascularization. SIGNIFICANCE STATEMENT: Siponimod is an extensively characterized sphingosine-1-phosphate receptor modulator already approved for the treatment of multiple sclerosis. It inhibited retinal endothelial cell migration, potentiated endothelial barrier function, protected against tumor necrosis factor alpha-induced barrier disruption, and also inhibited suture-induced corneal neovascularization in rabbits. These results support its use for a novel therapeutic indication in the management of ocular neovascular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.122.001529 | DOI Listing |
Annual epidemics of influenza result in 3-5 million cases of severe illness and more than 600 000 deaths. Severe forms of influenza are usually characterized by vascular endothelial cells damage. Thus, influenza A viruses, including subtypes A(H1N1)pdm09, A(H3N2), as well as highly pathogenic avian influenza viruses, can infect the vascular endothelium, leading to activation and subsequent dysfunction of these cells.
View Article and Find Full Text PDFCardiovasc Toxicol
January 2025
Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA.
Pregnancy is a vulnerable time with significant cardiovascular changes that can lead to adverse outcomes, which can extend into the postpartum window. Exposure to emissions from electronic cigarettes (Ecig), commonly known as "vaping," has an adverse impact on cardiovascular function during pregnancy and post-natal life of offspring, but the postpartum effects on maternal health are poorly understood. We used a Sprague Dawley rat model, where pregnant dams are exposed to Ecigs between gestational day (GD)2-GD21 to examine postpartum consequences.
View Article and Find Full Text PDFBlood
January 2025
KULeuven, Leuven, Belgium.
Thrombomodulin (TM) expressed on endothelial cells regulates coagulation. Specific nonsense variants in the TM gene, THBD, result in high soluble TM levels causing rare bleeding disorder. In contrast, though THBD variants have been associated with venous thromboembolism, this association remains controversial.
View Article and Find Full Text PDFBiomark Med
January 2025
Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China.
Raftlin (raft-linking) protein is an essential component of the lipid raft structure and plays a crucial role in B and T cell signaling pathways. It facilitates B cell receptor (BCR) signaling by promoting calcium mobilization and tyrosine phosphorylation in the cells while colocalizing with BCR on the cell membrane. Interestingly, Raftlin is internalized in lipopolysaccharide-stimulated T cells by colocalization with Toll-like receptor 4 (TLR4), wherein it exerts a similar role as in B cells.
View Article and Find Full Text PDFPlast Reconstr Surg
January 2025
Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
Background: The stromal vascular fraction (SVF) of adipose tissue has now been widely used in plastic surgeries, clinical trials and therapies. However, the cell composition of SVF undergoes dynamic changes during aging and obesity, which may influence the efficacy of the SVF. This study analyzed the effects of age, harvest site and body mass index on the cell composition of the SVF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!