Grape-derived pectic polysaccharides alter the tannin and pigment composition of Cabernet Sauvignon red wines.

Curr Res Food Sci

Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, D, 53115, Bonn, Germany.

Published: April 2023

AI Article Synopsis

Article Abstract

Tannins, anthocyanins, and polymeric pigments are essential phenolic constituents of red wine because they provide color, color stability, and mouthfeel properties like astringency. The behavior of these compounds is significantly affected by pectic polysaccharides, whereby the extent of their influence on red wine quality depends on their structural features and their interactions with the polyphenols. In the present study, the composition of the pectic polysaccharides of commercially available Cabernet Sauvignon wines and their impact on anthocyanin, tannin, and polymeric pigment analyses was characterized. This was accomplished by preparation of polysaccharide deprived wines and comparison of the polyphenolic composition of both, the wines and their corresponding polysaccharide-free counterparts. The results show that the cell wall fragments enhance the spectral absorbance of anthocyanins by facilitating anthocyanin self-association, leading to a co-pigmentation-like effect. Low molecular weight pectins like rhamnogalacturonan II and polygalacturonic acids with a low degree of esterification are assumed to form soluble complexes with anthocyanins and also prevent protein precipitation of tannins, which was reduced by 6-13%. High molecular weight pectins with a high degree of esterification lead to the increased precipitability of pigments and tannins by a factor of 1.3 to 32.4 and 1.1 to 1.9, respectively, seemingly impairing the incorporation of anthocyanins in tannins to form precipitable polymeric pigments that are responsible for the longevity of red wine color. The increased precipitability of the pigments due to the interactions with the polysaccharides may indicate the formation of pigmented yet non-covalent aggregates that show comparable properties to the covalently formed precipitable pigments. The formation of those non-covalent structures may affect red wine color stability and astringency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176157PMC
http://dx.doi.org/10.1016/j.crfs.2023.100506DOI Listing

Publication Analysis

Top Keywords

red wine
16
pectic polysaccharides
12
cabernet sauvignon
8
polymeric pigments
8
color stability
8
molecular weight
8
weight pectins
8
degree esterification
8
increased precipitability
8
precipitability pigments
8

Similar Publications

Resveratrol is a natural polyphenol (stilbenoid), which can be found in grape skin, red wine, blueberries, peanuts and others. The biological properties of resveratrol, in particular antioxidant, anti-inflammatory, anticancer, estrogenic, vasorelaxant and cardioprotective activity, are the main reason for its importance in medicine and pharmacy. Despite all of its advantages, however, there are many problems related to this polyphenolic substance, such as low stability, water insolubility, poor bioavailability and fast metabolism.

View Article and Find Full Text PDF

Repeated expeditions across various regions of Georgia in the early 2000s led to the identification of 434 wild grapevine individuals ( L. subsp. (C.

View Article and Find Full Text PDF

Controlling the microorganisms employed in vinification is a critical factor for successful wine production. Novel methods aimed at lowering sulfites used for wine stabilization are sought. UV-C irradiation has been proposed as an alternative for reducing the viable cell count of microorganisms in wine and grape juice.

View Article and Find Full Text PDF

The recovery of polysaccharides (PS) from red grape marc and white grape pomace by enzymatic degradation of their cell walls is an interesting green extraction technique that preserves the structure and bioactivity of PS. The type and dose of enzyme, and the liquid/solid (L/S) ratio in PS extraction were studied using four commercial enzymes. Four different doses per enzyme were used, with tartaric acid as solvent and L/S ratios of 1.

View Article and Find Full Text PDF

: The aim of this study was to evaluate the influence of acidic beverages on the mechanical properties of various dental resin-based materials. : A total number of 160 samples were prepared using four types of resin-based materials-Group A ( = 40): flowable composite, Group B ( = 40): heavy-flow composite, Group C ( = 40): resin-based sealant and Group D ( = 40): nano-hybrid composite. Then, the samples were distributed into four subgroups according to the submersion solution: ( = 10): artificial saliva, ( = 10): coffee, ( = 10): cola and ( = 10): red wine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!