To develop and test a deep learning (DL) model to distinguish acetabular fractures (AFs) on pelvic anteroposterior radiographs (PARs) and compare its performance to that of clinicians. A total of 1,120 patients from a big level-I trauma center were enrolled and allocated at a 3:1 ratio for the DL model's development and internal test. Another 86 patients from two independent hospitals were collected for external validation. A DL model for identifying AFs was constructed based on DenseNet. AFs were classified into types A, B, and C according to the three-column classification theory. Ten clinicians were recruited for AF detection. A potential misdiagnosed case (PMC) was defined based on clinicians' detection results. The detection performance of the clinicians and DL model were evaluated and compared. The detection performance of different subtypes using DL was assessed using the area under the receiver operating characteristic curve (AUC). The means of 10 clinicians' sensitivity, specificity, and accuracy to identify AFs were 0.750/0.735, 0.909/0.909, and 0.829/0.822, in the internal test/external validation set, respectively. The sensitivity, specificity, and accuracy of the DL detection model were 0.926/0.872, 0.978/0.988, and 0.952/0.930, respectively. The DL model identified type A fractures with an AUC of 0.963 [95% confidence interval (CI): 0.927-0.985]/0.950 (95% CI: 0.867-0.989); type B fractures with an AUC of 0.991 (95% CI: 0.967-0.999)/0.989 (95% CI: 0.930-1.000); and type C fractures with an AUC of 1.000 (95% CI: 0.975-1.000)/1.000 (95% CI: 0.897-1.000) in the test/validation set. The DL model correctly recognized 56.5% (26/46) of PMCs. A DL model for distinguishing AFs on PARs is feasible. In this study, the DL model achieved a diagnostic performance comparable to or even superior to that of clinicians.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176114 | PMC |
http://dx.doi.org/10.3389/fphys.2023.1146910 | DOI Listing |
J Orthop Sci
January 2025
Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China. Electronic address:
Purpose: A finite element analysis was performed to simulate the biomechanical differences between anterior-posterior (AP) direction and posterior-anterior (PA) direction placement of two cannulated screws in Hoffa fractures.
Methods: Computed tomography images of an healthy male volunteer were used to simulate Letenneur Ⅰ, Ⅱa, Ⅱb, Ⅱc, Ⅲ Hoffa fractures, and two groups of screw internal fixation models were constructed. Two 6.
J Orthop Surg Res
January 2025
Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China.
Background: Finite element analysis (FEA) could advance the understanding of fracture fixation and guide the choice of surgical treatment. This study aimed to compare two internal fixation methods in the treatment of displaced proximal humeral fracture (PHF) through FEA.
Methods: Three-dimensional FEA model based on the left shoulder joint of a 67-year-old female patient with PHFs and osteoporosis was adopted, in order to analyze the fixation effect and load stress distribution of internal fixation plates with open reduction and intramedullary nails without opening the fracture in the treatment of Neer III-VI PHF.
J Orthop Surg Res
January 2025
Orthopaedic Department, Assiut Faculty of Medicine, Assiut University Hospital, Assiut University, Kasr Elini Street, Number 7, P.O. Box 110, Assuit, 71515, Egypt.
Aims: Which is the best extensile lateral (ELA) or sinus tarsi (STA) approach for osteosynthesis displaced intraarticular calcaneal fracture (DIACF) is still debatable. The current RCT's primary objective was to compare the complications incidence after open reduction and internal fixation of DIACFs through STA vs. ELA.
View Article and Find Full Text PDFJ Orthop Sci
January 2025
Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410013, China.
Backgroud: Medial humeral epicondyle fracture is a prevalent type of upper limb fractures in pediatric patients. This study aims to compare the follow-up clinical results and complications in 30 children with medial epicondyle fractures who were treated with either metal screws or absorbable screws at our hospital.
Methods: A retrospective review was conducted on 30 children with medial humeral epicondyle fractures, who were divided into two groups: Metal group (18 children) underwent fixation using metal screws, while Absorbable group (12 children) received absorbable screws between January 2016 and June 2024.
Chin J Traumatol
December 2024
Department of Orthopaedics, Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003, China.
Purpose: Bone cement-reinforced fenestrated pedicle screws (FPSs) have been widely used in the internal fixation and repair of the spine with osteoporosis in recent years and show significant improvement in fixation strength and stability. However, compared with conventional reinforcement methods, the advantages of bone cement-reinforced FPSs remain undetermined. This article compares the effects of fenestrated and conventional pedicle screws (CPSs) combined with bone cement in the treatment of osteoporosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!