Herein, we reported the use of -doped green-emitting carbon quantum dots (-CQDs) as a fluorescent probe for determining of Fe ions in for the first time. The -CQDs were synthesised through an efficient, one-step, and safe hydrothermal technique using citric acid as the carbon source and glutamine as a novel nitrogen source. The temporal evolution of the optical properties was investigated by varying the synthetic conditions with respect to temperature (160 °C, 180 °C, 200 °C, 220 °C and 240 °C) and citric acid: glutamine precursor ratio (1:1, 1:1.5, l.2,1:3 and 1:4). The -CQDs was characterised using Fourier-Transform Infra-red Spectroscopy (FTIR) High-resolution transmission electron microscope (HRTEM), ultraviolet-visible spectroscopy (UV-vis) and X-Ray diffraction analysis (XRD) while its stability was evaluated in different media; NaCl, Roswell Park Memorial Institute (RPMI) and Phosphate Buffered Saline (PBS), and at different pHs. The -CQDs displayed green (525 nm) emission and were spherical with an average particle diameter of 3.41 ± 0.76 nm. The FTIR indicated carboxylic, amino, and hydroxyl functional groups. The as-synthesised -CQDs were stable in NaCl (up to 1 M), RPMI, and PBS without any significant change in its fluorescent intensity. The pH evaluation showed pHs 6 and 7 as the optimum pHs, while the fluorometric analysis showed selectivity towards Fe in the presence and absence of interfering ions. The detection limit of 1.05 μM was calculated, and the photoluminescence mechanism revealed static quenching. The -synthesised -CQDs was used as a fluorescent nanoprobe to determine the amount of Fe in (Potatoes) tubers. The result showed a high level of accuracy (92.13-96.20%) when compared with an established standard analytical procedure with excellent recoveries of 99.23-103.9%. We believe the -synthesised -CQDs can be utilised as a reliable and fast fluorescence nanoprobe for the determining of Fe ions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176077 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e15904 | DOI Listing |
J Am Chem Soc
January 2025
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands.
We present the synthesis, structural analysis, and remarkable reactivity of the first carbon nanohoop that fully incorporates ferrocene in the macrocyclic backbone. The high strain imposed on the ferrocene by the curved nanohoop structure enables unprecedented photochemical reactivity of this otherwise photochemically inert metallocene complex. Visible light activation triggers a ring-opening of the nanohoop structure, fully dissociating the Fe-cyclopentadienyl bonds in the presence of 1,10-phenanthroline.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
Based on nitrogen and phosphorus co-doped carbon dots (NP-CDs), a direct, quick, and selective sensing probe for fluorometric detection of rutin has been developed. Utilizing ethylene diamine tetra acetic acid (EDTA) as a carbon and nitrogen source and diammonium hydrogen phosphate (NH)HPO as a nitrogen and phosphorus source. The NP-CDs were synthesized in less than 3 min with a straightforward one-step microwave pyrolysis process with a high quantum yield (63.
View Article and Find Full Text PDFChem Sci
January 2025
Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong Wollongong New South Wales 2522 Australia
Although electrostatic catalysis can enhance the kinetics and selectivity of reactions to produce greener synthetic processes, the highly directional nature of electrostatic interactions has limited widespread application. In this study, the influence of oriented electric fields (OEF) on radical addition and atom abstraction reactions are systematically explored with ion-trap mass spectrometry using structurally diverse distonic radical ions that maintain spatially separated charge and radical moieties. When installed on rigid molecular scaffolds, charged functional groups lock the magnitude and orientation of the internal electric field with respect to the radical site, creating an OEF which tunes the reactivity across the set of gas-phase carbon-centred radical reactions.
View Article and Find Full Text PDFNano Lett
January 2025
School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
Inorganic CsPbI perovskite has emerged as a promising emitter for deep-red light-emitting diodes (LEDs) due to its intrinsic thermal stability and suitable bandgap. However, uncontrollable CsPbI crystallization induced by an alkaline zinc oxide (ZnO) substrate in bulk film-based LEDs leads to insufficient external quantum efficiencies (EQEs) at high brightness, leaving obstacles in commercialization progress. Herein, we demonstrate an effective acidic engineering strategy with wide applicability to modify the surface property of ZnO and regulate CsPbI crystallization.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
North Caucasus Federal University, 355000 Stavropol, Russia. Electronic address:
Currently, biopolymer-based Zn-containing nanoforms are of great interest for medical applications. However, there is lack information on optimal synthesis parameters, reagents and stabilizing agent for production of zinc carbonate nanoparticles (ZnC-NPs). In this work, synthesis of ZnC-NPs was carried out by chemical precipitation with the use of chitosan, hydroxyethyl cellulose, methyl cellulose and hyaluronic acid as stabilizing agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!