Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An intact blood-retinal barrier is critical to maintaining the function of the retina. Many diseases of the eye have been directly associated with impairment in vascular permeability, and methods to measure vascular permeability could offer a window into early detection of disease; however, there exist no direct measures of vascular permeability that have be translated to the clinic. This work details a complete clinical workflow to quantify vascular permeability and volumetric blood flow from fluorescein videoangiography data, with validation through realistic simulations. For optimizing the protocol, this study carried on frame rate of fluorescein videoangiography to generate a high-resolution image while minimizing the error.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182862 | PMC |
http://dx.doi.org/10.1117/12.2610279 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!