AI Article Synopsis

  • The study examines how individual exposure to air pollution in urban areas like São Paulo varies based on socioeconomic status and commuting times.
  • Researchers used black carbon levels found in autopsied lungs as a measure of pollution and analyzed data to create a misclassification index.
  • Findings indicate that lower socioeconomic status and longer commuting times correlate with underestimation of actual air pollution exposure, prompting a call for urban planning reforms to address health impacts.

Article Abstract

Background: The characterisation of individual exposure to air pollution in urban scenarios is a challenge in environmental epidemiological studies. We investigated if the city's pollution monitoring stations over or underestimate the exposure of individuals depending on their socioeconomic conditions and daily commuting times.

Methods: The amount of black carbon accumulated in the lungs of 604 deceased who underwent autopsy in São Paulo was considered as a proxy for PM. The concentrations of PM in the residence of the deceased were estimated by interpolating an ordinary kriging model. These two-exposure metrics allowed us to construct an environmental exposure misclassification index ranging from -1 to 1. The association between the index and daily commuting, socioeconomic context index (GeoSES), and street density as predictors was assessed by means of a multilevel linear regression model.

Findings: With a decrease of 01 units in GeoSES, the index increases, on average, by 0028 units and with an increase of 1 h in daily commuting, the index increases, on average, by 0022 units indicating that individual exposure to air pollution is underestimated in the lower GeoSES and in people with many hours spent in daily commuting.

Interpretation: Reduction of health consequences of air pollution demands not only alternative fuel and more efficient mobility strategies, but also should include profound rethink of cities.

Funding: São Paulo Research Foundation (FAPESP-13/21728-2) and National Council for Scientific and Technological Development (CNPq-304126/2015-2, 401825/2020-5).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176049PMC
http://dx.doi.org/10.1016/j.lana.2023.100500DOI Listing

Publication Analysis

Top Keywords

air pollution
16
são paulo
12
daily commuting
12
individual exposure
8
exposure air
8
increases average
8
exposure
5
pollution
5
assessing socioeconomic
4
socioeconomic bias
4

Similar Publications

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.

View Article and Find Full Text PDF

Toxicological effects of long-term continuous exposure to ambient air on human bronchial epithelial Calu-3 cells exposed at the air-liquid interface.

Environ Res

January 2025

Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany.

Air pollution significantly contributes to the global burden of respiratory and cardiovascular diseases. While single source/compound studies dominate current research, long-term, multi-pollutant studies are crucial to understanding the health impacts of environmental aerosols. Our study aimed to use the first air-liquid interface (ALI) aerosol exposure system adapted for long-term in vitro exposures for ambient air in vitro exposure.

View Article and Find Full Text PDF

Diamide insecticides in PM: The unreported rural and urban air pollutants.

J Hazard Mater

December 2024

State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong. Electronic address:

The broad application of various pesticides guarantees the development of agriculture all over the word but has ultimately led to their ubiquitous release into the environment as hazardous chemical residues. Diamide insecticides (DAIs) are regarded as new choice for prevention and protection of agricultural crops and city landscaping plants from the pests in more and more countries. However, their presence in fine particulate matter (PM) and associated health risks have not been studied.

View Article and Find Full Text PDF

Indoor dust can adsorb various pollutants and long-term deposition can significantly impact air quality and human health. This study investigated the occurrence, source apportionment, and health risks associated with polycyclic aromatic hydrocarbons (PAHs) and their derivatives (d-PAHs) in indoor dust, by focusing on residential and public buildings in Nanjing, China. The concentration of 16 PAHs and 27 d-PAHs ranged from 511 to 5472 ng/g and from 422 to 2904 ng/g, with the most abundant compounds being fluoranthene and 1,2-benz[a]anthraquinone, respectively.

View Article and Find Full Text PDF

Autumn and winter air phytofiltration - Are plants able to biofilter air during peak pollutant emissions?

J Environ Manage

January 2025

Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland; Centre for Climate Research SGGW, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland. Electronic address:

Air pollution is highest in winter. The high concentration of particulate matter (PM) and trace elements (TE) after the growing season is influenced by increased pollutant emissions, unfavorable meteorological conditions, and the low efficiency of air phytofiltration. Plants that can remove pollutants from the air during the growing season are leafless in autumn/winter, and therefore unable to capture PM/TE effectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!