Advanced oxidation and a metrological strategy based on CLC-MS for the removal of pharmaceuticals from pore & surface water.

Chemosphere

Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, Universidad de Castilla - La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain. Electronic address:

Published: August 2023

In this work, it is studied the photolysis, electrolysis, and photo-electrolysis of a mixture of pharmaceutics (sulfadiazine, naproxen, diclofenac, ketoprofen and ibuprofen) contained in two very different types of real water matrices (obtained from surface and porewater reservoirs), trying to clarify the role of the matrix on the degradation of the pollutants. To do this, a new metrological approach was also developed for screening of pharmaceuticals in waters by capillary liquid chromatography mass spectrometry (CLC-MS). This allows the detection at concentrations lower than 10 ng mL. Results obtained in the degradation tests demonstrate that inorganic composition of the water matrix directly influences on the efficiency of the drugs removal by the different EAOPs and better degradation results were obtained for experiments carried out with surface water. The most recalcitrant drug studied was ibuprofen for all processes evaluated, while diclofenac and ketoprofen were found to be the easiest drugs for being degraded. Photo-electrolysis was found to be more efficient than photolysis and electrolysis, and the increase in the current density was found to attain a slight improvement in the removal although with an associated huge increase in the energy consumption. The main reaction pathways for each drug and technology were also proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.138847DOI Listing

Publication Analysis

Top Keywords

surface water
8
photolysis electrolysis
8
diclofenac ketoprofen
8
advanced oxidation
4
oxidation metrological
4
metrological strategy
4
strategy based
4
based clc-ms
4
clc-ms removal
4
removal pharmaceuticals
4

Similar Publications

The swift rise of hazardous dye effluent from diverse sectors continues to be a severe public health problem and a top priority for environmental preservation, presenting a significant obstacle to the current conventional water treatment systems. This study aims to develop an efficient and reusable approach for removing cresyl fast violet dye using mullite nanoparticles. Some factors such as pH, nano-mullite dosage, agitation speed, time, and others that affect the removal process were studied.

View Article and Find Full Text PDF

We introduce a family of membrane-targeted azobenzenes (MTs) with a push-pull character as a new tool for cell stimulation. These molecules are water soluble and spontaneously partition in the cell membrane. Upon light irradiation, they isomerize from trans to cis, changing the local charge distribution and thus stimulating the cell response.

View Article and Find Full Text PDF

Wastewater contamination by organic dyes, especially Rhodamine B (RhB), possess a significant environmental challenge. This study explores a novel bio sorbent for the removal of RhB dye from contaminated water, using chitosan trisodium citrate-modified magnetic nanoparticles (Fe₃O₄@CSTSC@PANI) coated with polyaniline. The nanocomposite was characterized by FT-IR, XRD, HRTEM, SEM, BET surface analysis.

View Article and Find Full Text PDF

Mass load and source apportionment of pharmaceutical and personal care product in the Wuhan section of the Yangtze River, China.

Sci Total Environ

December 2024

Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK. Electronic address:

Given the limited research on pharmaceuticals and personal care products (PPCPs) in the Wuhan section of the Yangtze River (WYR), this work investigated the distribution of 15 PPCPs in this region, assessed their ecological risks and annual fluxes. It was further to analyze the levels of indicator sucralose in the WYR to understand the sources of PPCPs. The results showed the average concentrations were 143.

View Article and Find Full Text PDF

Multifunctional aluminum alloy slippery liquid-infused surface with porous and boehmite nanoflower structure.

J Colloid Interface Sci

December 2024

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China. Electronic address:

The depletion of lubricants in (slippery liquid-infused porous surfaces) SLIPS poses a significant challenge to their long-term functionality. While line-shaped rough structures can mitigate lubricant loss to some extent, they often fail to provide the stability required for sustained performance. In this study, we present a novel porous nanoflower aluminum alloy slippery liquid-infused surface (P-NF-AA SLIPS), which integrates a porous framework with a rough nanoflower structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!