Emerging polycyclic aromatic hydrocarbon (PAH) and trace metal leachability from reclaimed asphalt pavement (RAP).

Chemosphere

Department of Environmental Engineering Sciences, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA. Electronic address:

Published: August 2023

The environmental risks associated with the storage, reuse, and disposal of unencapsulated reclaimed asphalt pavement (RAP) has been previously examined, but because of a lack of standardized column testing protocols and recent interest on emerging constituents with higher toxicity, questions surrounding leaching risks from RAP continue. To address these concerns, RAP from six, discrete stockpiles in Florida was collected and leach tested following the most up-to-date, standard column leaching protocol - United States Environmental Protection Agency (US EPA) Leaching Environmental Assessment Framework (LEAF) Method 1314. Sixteen EPA priority polycyclic aromatic hydrocarbons (PAHs), 23 emerging PAHs, identified through relevance in literature, and heavy metals were investigated. Column testing showed minimal leaching of PAHs; only eight compounds, three priority PAHs and five emerging PAHs, were released at quantifiable concentrations, and where applicable, were below US EPA Regional Screening Levels (RSL). Though emerging PAHs were identified more frequently, in most cases, priority compounds dominated contributions to overall PAH concentration and benzo(a)pyrene (BaP) equivalent toxicity. Except for arsenic, molybdenum, and vanadium in two samples, metals were found below limits of detection (LOD) or below risk thresholds. Arsenic and molybdenum concentrations diminished over time with increased exposure to liquid, but elevated vanadium concentrations persisted in one sample. Further batch testing linked vanadium to the aggregate component of the sample, unlikely to be encountered in typical RAP sources. As demonstrated by generally low constituent mobility observed during testing, the leaching risks associated with the beneficial reuse of RAP are limited, and under typical reuse conditions, factors of dilution and attenuation would likely reduce leached concentrations below relevant risk-based thresholds at a point of compliance. When considering emerging PAHs with higher toxicities, analyses indicated minimal impact to overall leachate toxicity, further suggesting that with proper management, this heavily recycled waste stream is unlikely to pose leaching risk.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.138937DOI Listing

Publication Analysis

Top Keywords

emerging pahs
16
polycyclic aromatic
8
reclaimed asphalt
8
asphalt pavement
8
pavement rap
8
risks associated
8
column testing
8
leaching risks
8
pahs emerging
8
pahs identified
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!