A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preparation of bio-jet fuels by a controllable integration process: Coupling of biomass fermentation and olefin polymerization. | LitMetric

Preparation of bio-jet fuels by a controllable integration process: Coupling of biomass fermentation and olefin polymerization.

Bioresour Technol

Department of Chemical Physics, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Anhui Key Laboratory of Biomass Clean Energy, University of Science & Technology of China, Hefei 230026, PR China. Electronic address:

Published: August 2023

This work demonstrated that bio-jet fuels can be directionally prepared from bagasse (a typical lignocellulose biomass) by integrating bio- and chemical catalysis reaction processes. This controllable transformation started with the preparation of acetone/butanol/ethanol (ABE) intermediates through the enzymolysis and fermentation of bagasse. Pretreatment of bagasse by deep eutectic solvent (DES) promoted the enzymatic hydrolysis and fermentation because it destroyed the structure of biomass and remove lignin in lignocellulose. Subsequently, the selective catalytic conversion of sugarcane derived ABE broth to jet range fuels was achieved through an integrated process: ABE dehydration to light olefins over the HSAPO-34 catalyst and olefin polymerization to bio-jet fuels over the Ni/HBET catalyst. The dual catalyst bed synthesis mode improved the selectively of bio-jet fuels. High selectivity of jet range fuels (83.0 %) and high conversion of ABE (95.3 %) were obtained by the integrated process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.129175DOI Listing

Publication Analysis

Top Keywords

bio-jet fuels
16
olefin polymerization
8
jet range
8
range fuels
8
integrated process
8
fuels
6
preparation bio-jet
4
fuels controllable
4
controllable integration
4
integration process
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!